Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 430(1): 87-95, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20518742

RESUMO

Matriptase-2 is a member of the TTSPs (type II transmembrane serine proteases), an emerging class of cell surface proteases involved in tissue homoeostasis and several human disorders. Matriptase-2 exhibits a domain organization similar to other TTSPs, with a cytoplasmic N-terminus, a transmembrane domain and an extracellular C-terminus containing the non-catalytic stem region and the protease domain. To gain further insight into the biochemical functions of matriptase-2, we characterized the subcellular localization of the monomeric and multimeric form and identified cell surface shedding as a defining point in its proteolytic processing. Using HEK (human embryonic kidney)-293 cells, stably transfected with cDNA encoding human matriptase-2, we demonstrate a cell membrane localization for the inactive single-chain zymogen. Membrane-associated matriptase-2 is highly N-glycosylated and occurs in monomeric, as well as multimeric, forms covalently linked by disulfide bonds. Furthermore, matriptase-2 undergoes shedding into the conditioned medium as an activated two-chain form containing the catalytic domain, which is cleaved at the canonical activation motif, but is linked to a released portion of the stem region via a conserved disulfide bond. Cleavage sites were identified by MS, sequencing and mutational analysis. Interestingly, cell surface shedding and activation of a matriptase-2 variant bearing a mutation at the active-site serine residue is dependent on the catalytic activity of co-expressed or co-incubated wild-type matriptase-2, indicating a transactivation and trans-shedding mechanism.


Assuntos
Precursores Enzimáticos/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Catálise , Domínio Catalítico , Linhagem Celular , Membrana Celular/metabolismo , Meios de Cultivo Condicionados , Ativação Enzimática , Precursores Enzimáticos/genética , Espaço Extracelular/enzimologia , Humanos , Proteínas de Membrana/genética , Mutação , Ligação Proteica , Serina Endopeptidases/genética , Transfecção
2.
FEBS J ; 272(24): 6297-309, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16336267

RESUMO

Endothelin-1 (ET-1) plays an important role in tissue remodelling and fibrogenesis by inducing synthesis of collagen I via protein kinase C (PKC). ET-1 signals are transduced by two receptor subtypes, the ETA- and ETB-receptors which activate different Galpha proteins. Here, we investigated the expression of both ET-receptor subtypes in human primary dermal fibroblasts and demonstrated that the ETA-receptor is the major ET-receptor subtype expressed. To determine further signalling intermediates, we inhibited Galphai and three phospholipases. Pharmacologic inhibition of Galphai, phosphatidylcholine-phospholipase C (PC-PLC) and phospholipase D (PLD), but not of phospholipase Cbeta, abolished the increase in collagen I by ET-1. Inhibition of all phospholipases revealed similar effects on TGF-beta1 induced collagen I synthesis, demonstrating involvement of PC-PLC and PLD in the signalling pathways elicited by ET-1 and TGF-beta1. ET-1 and TGF-beta1 each stimulated collagen I production and in an additive manner. ET-1 further induced connective tissue growth factor (CTGF), as did TGF-beta1, however, to lower levels. While rapid and sustained CTGF induction was seen following TGF-beta1 treatment, ET-1 increased CTGF in a biphasic manner with lower induction at 3 h and a delayed and higher induction after 5 days of permanent ET-1 treatment. Coincidentally at 5 days of permanent ET-1 stimulation, a switch in ET-receptor subtype expression to the ETB-receptor was observed. We conclude that the signalling pathways induced by ET-1 and TGF-beta1 leading to augmented collagen I production by fibroblasts converge on a similar signalling pathway. Thereby, long-time stimulation by ET-1 resulted in a changed ET-receptor subtype ratio and in a biphasic CTGF induction.


Assuntos
Colágeno Tipo I/biossíntese , Endotelina-1/farmacologia , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Células Cultivadas , Fibroblastos/citologia , Regulação da Expressão Gênica , Homeostase , Humanos , Receptores de Endotelina/análise , Transdução de Sinais , Pele/citologia , Fator de Crescimento Transformador beta1 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA