Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
mSphere ; : e0012624, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695568

RESUMO

Biofilm formation is an important virulence factor for methicillin-resistant Staphylococcus aureus (MRSA). The extracellular matrix of MRSA biofilms contains significant amounts of double-stranded DNA that hold the biofilm together. MRSA cells secrete micrococcal nuclease (Nuc1), which degrades double-stranded DNA. In this study, we used standard methodologies to investigate the role of Nuc1 in MRSA biofilm formation and dispersal. We quantified biofilm formation and extracellular DNA (eDNA) levels in broth and agar cultures. In some experiments, cultures were supplemented with sub-MIC amoxicillin to induce biofilm formation. Biofilm erosion was quantitated by culturing biofilms on rods and enumerating detached colony-forming units (CFUs), and biofilm sloughing was investigated by perfusing biofilms cultured in glass tubes with fresh broth and measuring the sizes of the detached cell aggregates. We found that an MRSA nuc1- mutant strain produced significantly more biofilm and more eDNA than a wild-type strain, both in the absence and presence of sub-MIC amoxicillin. nuc1- mutant biofilms grown on rods detached significantly less than wild-type biofilms. Detachment was restored by exogenous DNase or complementing the nuc1- mutant. In the sloughing assay, nuc1- mutant biofilms released cell aggregates that were significantly larger than those released by wild-type biofilms. Our results suggest that Nuc1 modulates biofilm formation, biofilm detachment, and the sizes of detached cell aggregates. These processes may play a role in the spread and subsequent survival of MRSA biofilms during biofilm-related infections.IMPORTANCEInfections caused by antibiotic-resistant bacteria known as methicillin-resistant Staphylococcus aureus (MRSA) are a significant problem in hospitals. MRSA forms adherent biofilms on implanted medical devices such as catheters and breathing tubes. Bacteria can detach from biofilms on these devices and spread to other parts of the body such as the blood or lungs, where they can cause life-threatening infections. In this article, researchers show that MRSA secretes an enzyme known as thermonuclease that causes bacteria to detach from the biofilm. This is important because understanding the mechanism by which MRSA detaches from biofilms could lead to the development of procedures to mitigate the problem.

2.
Cell Rep ; 43(4): 114022, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568806

RESUMO

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.


Assuntos
Aderência Bacteriana , Queratinócitos , Pele , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Humanos , Pele/microbiologia , Pele/metabolismo , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Lectinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Filogenia , Ligação Proteica
3.
mBio ; 15(5): e0045324, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38546267

RESUMO

Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20%-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like medium (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant Staphylococcus aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted quantitative reverse transcription-PCR (qRT-PCR) experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. This improved adherence to corneocytes was dependent on both acidic pH and growth in SLM. These results support the potential utility of SLM as an in vitro model for assessing staphylococcal physiology and metabolism on human skin. IMPORTANCE: Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed medium that strives to replicate the human skin surface environment and demonstrates roles for adhesins clumping factor A (ClfA), serine-rich repeat glycoprotein adhesin (SraP), and the fibronectin binding proteins (Fnbps) in human corneocyte adherence.


Assuntos
Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina , Pele , Fatores de Virulência , Humanos , Pele/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/fisiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Meios de Cultura/química , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Infecções Estafilocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aderência Bacteriana
4.
J Invest Dermatol ; 144(5): 950-953, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430083

RESUMO

Pruritus or itch is a defining symptom of atopic dermatitis (AD). The origins of itch are complex, and it is considered both a defense mechanism and a cause of disease that leads to inflammation and psychological stress. Considerable progress has been made in understanding the processes that trigger itch, particularly the pruritoceptive origins that are generated in the skin. This perspective review discusses the implications of a recent observation that the V8 protease expressed by Staphylococcus aureus can directly trigger sensory neurons in the skin through activation of protease-activated receptor 1. This may be a key to understanding why itch is so common in AD because S. aureus commonly overgrows in this disease owing to deficient antimicrobial defense from both the epidermis and the cutaneous microbiome. Increased understanding of the role of microbes in AD provides increased opportunities for safely improving the treatment of this disorder.


Assuntos
Dermatite Atópica , Prurido , Staphylococcus aureus , Dermatite Atópica/microbiologia , Dermatite Atópica/complicações , Dermatite Atópica/imunologia , Humanos , Prurido/microbiologia , Prurido/imunologia , Animais , Pele/microbiologia , Pele/patologia , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/metabolismo , Receptores Ativados por Proteinase/metabolismo , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia
5.
mBio ; 15(4): e0348323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511930

RESUMO

Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.


Assuntos
Proteínas de Membrana , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Proteínas de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Tripsina/metabolismo , Biofilmes , Infecções Estafilocócicas/metabolismo
6.
FEMS Microbiol Rev ; 48(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38337187

RESUMO

Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Proteínas da Matriz Extracelular , Biofilmes , Antibacterianos , Infecções Estafilocócicas/microbiologia
7.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38370751

RESUMO

Staphylococcus aureus, the most frequent cause of skin infections, is more common in men than women and selectively colonizes the skin during inflammation. Yet, the specific cues that drive infection in these settings remain unclear. Here we show that the host androgens testosterone and dihydrotestosterone promote S. aureus pathogenesis and skin infection. Without the secretion of these hormones, skin infection in vivo is limited. Testosterone activates S. aureus virulence in a concentration dependent manner through stimulation of the agr quorum sensing system, with the capacity to circumvent other inhibitory signals in the environment. Taken together, our work defines a previously uncharacterized inter-kingdom signal between the skin and the opportunistic pathogen S. aureus and identifies the mechanism of sex-dependent differences in S. aureus skin infection. One-Sentence Summary: Testosterone promotes S. aureus pathogenesis through activation of the agr quorum sensing system.

8.
PLoS Biol ; 22(1): e3002451, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180978

RESUMO

Lipoproteins of the opportunistic pathogen Staphylococcus aureus play a crucial role in various cellular processes and host interactions. Consisting of a protein and a lipid moiety, they support nutrient acquisition and anchor the protein to the bacterial membrane. Recently, we identified several processed and secreted small linear peptides that derive from the secretion signal sequence of S. aureus lipoproteins. Here, we show, for the first time, that the protein moiety of the S. aureus lipoprotein CamS has a biological role that is distinct from its associated linear peptide staph-cAM373. The small peptide was shown to be involved in interspecies horizontal gene transfer, the primary mechanism for the dissemination of antibiotic resistance among bacteria. We provide evidence that the CamS protein moiety is a potent repressor of cytotoxins, such as α-toxin and leukocidins. The CamS-mediated suppression of toxin transcription was reflected by altered disease severity in in vivo infection models involving skin and soft tissue, as well as bloodstream infections. Collectively, we have uncovered the role of the protein moiety of the staphylococcal lipoprotein CamS as a previously uncharacterized repressor of S. aureus toxin production, which consequently regulates virulence and disease outcomes. Notably, the camS gene is conserved in S. aureus, and we also demonstrated the muted transcriptional response of cytotoxins in 2 different S. aureus lineages. Our findings provide the first evidence of distinct biological functions of the protein moiety and its associated linear peptide for a specific lipoprotein. Therefore, lipoproteins in S. aureus consist of 3 functional components: a lipid moiety, a protein moiety, and a small linear peptide, with putative different biological roles that might not only determine the outcome of host-pathogen interactions but also drive the acquisition of antibiotic resistance determinants.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Lipoproteínas/genética , Interações Hospedeiro-Patógeno , Moléculas de Adesão Celular , Citotoxinas , Peptídeos
9.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L206-L212, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113313

RESUMO

Bacterial pneumonia is a common clinical syndrome leading to significant morbidity and mortality worldwide. In the current study, we investigate a novel, multidirectional relationship between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Using an in vivo pneumonia model, we demonstrate that highly sulfated heparan sulfate (HS) oligosaccharides are shed into the airspaces in response to MRSA pneumonia. In vitro, these HS oligosaccharides do not directly alter MRSA growth or gene transcription. However, in the presence of an antimicrobial peptide (cathelicidin), increasing concentrations of HS inhibit the bactericidal activity of cathelicidin against MRSA as well as other nosocomial pneumonia pathogens (Klebsiella pneumoniae and Pseudomonas aeruginosa) in a dose-dependent manner. Surface plasmon resonance shows avid binding between HS and cathelicidin with a dissociation constant of 0.13 µM. These findings highlight a complex relationship in which shedding of airspace HS may hamper host defenses against nosocomial infection via neutralization of antimicrobial peptides. These findings may inform future investigation into novel therapeutic targets designed to restore local innate immune function in patients suffering from primary bacterial pneumonia.NEW & NOTEWORTHY Primary Staphylococcus aureus pneumonia causes pulmonary epithelial heparan sulfate (HS) shedding into the airspace. These highly sulfated HS fragments do not alter bacterial growth or transcription, but directly bind with host antimicrobial peptides and inhibit the bactericidal activity of these cationic polypeptides. These findings highlight a complex local interaction between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of bacterial pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Camundongos , Humanos , Animais , Catelicidinas/farmacologia , Catelicidinas/uso terapêutico , Peptídeos Catiônicos Antimicrobianos , Modelos Animais de Doenças , Pneumonia Bacteriana/tratamento farmacológico , Heparitina Sulfato , Oligossacarídeos/uso terapêutico , Antibacterianos
10.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045275

RESUMO

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.

11.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37961268

RESUMO

Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like media (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several Staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant S. aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted qRT-PCR experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. These results support the potential utility of SLM as an in vitro model for assessing Staphylococcal physiology and metabolism on human skin. Importance: Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed media that strives to replicate the human skin surface environment, and demonstrates roles for adhesins ClfA, SraP, and Fnbps in human corneocyte adherence.

12.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961602

RESUMO

Biofilm formation is an important virulence factor for methicillin-resistant Staphylococcus aureus (MRSA). The extracellular matrix of MRSA biofilms contains significant amounts of double-stranded DNA. MRSA cells also secrete micrococcal nuclease (Nuc1) which degrades double-stranded DNA. In this study we used a nuc1 mutant strain to investigate the role of Nuc1 in MRSA biofilm formation and dispersal. Biofilm was quantitated in microplates using a crystal violet binding assay. Extracellular DNA (eDNA) was isolated from colony biofilms and analyzed by agarose gel electrophoresis. In some experiments, broth or agar was supplemented with sub-MIC amoxicillin to induce biofilm formation. Biofilm erosion was quantitated by culturing biofilms on rods, transferring the rods to fresh broth, and enumerating CFUs that detached from the rods. Biofilm sloughing was investigated by culturing biofilms in glass tubes perfused with broth and measuring the sizes of the detached cell aggregates. We found that a nuc1 mutant strain produced significantly more biofilm and more eDNA than a wild-type strain in both the absence and presence of sub-MIC amoxicillin, nuc1 mutant biofilms grown on rods detached significantly less than wild-type biofilms. Detachment was restored by exogenous DNase or a wild-type nuc1 gene on a plasmid. In the sloughing assay, nuc1 mutant biofilms released cell aggregates that were significantly larger than those released by wild-type biofilms. Our results suggest that Nuc1 modulates biofilm formation, biofilm detachment, and the sizes of detached cell aggregates. These processes may play a role in the spread and subsequent survival of MRSA biofilms during biofilm-related infections.

13.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986818

RESUMO

Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. Bacterial DHFRs are targets of several important antibiotics as well as model enzymes for the role of protein conformational dynamics in enzyme catalysis. We collected 0.93 Å resolution X-ray diffraction data from both Bacillus subtilis (Bs) and E. coli (Ec) DHFRs bound to folate and NADP+. These oxidized ternary complexes should not be able to perform chemistry, however electron density maps suggest hydride transfer is occurring in both enzymes. Comparison of low- and high-dose EcDHFR datasets show that X-rays drive partial production of tetrahydrofolate. Hydride transfer causes the nicotinamide moiety of NADP+ to move towards the folate as well as correlated shifts in nearby residues. Higher radiation dose also changes the conformational heterogeneity of Met20 in EcDHFR, supporting a solvent gating role during catalysis. BsDHFR has a different pattern of conformational heterogeneity and an unexpected disulfide bond, illustrating important differences between bacterial DHFRs. This work demonstrates that X-rays can drive hydride transfer similar to the native DHFR reaction and that X-ray photoreduction can be used to interrogate catalytically relevant enzyme dynamics in favorable cases.

14.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995657

RESUMO

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Assuntos
Peptídeo Hidrolases , Prurido , Receptor PAR-1 , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Peptídeo Hidrolases/metabolismo , Prurido/microbiologia , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
15.
Cell Rep ; 42(11): 113332, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889753

RESUMO

Streptococcus pyogenes is an obligate human pathobiont associated with many disease states. Here, we present a model of S. pyogenes infection using intact murine epithelium. We were able to perform RNA sequencing to evaluate genetic changes undertaken by both the bacterium and host at 5 and 24 h post-infection. Analysis of these genomic data demonstrate that S. pyogenes undergoes genetic adaptation to successfully infect the murine epithelium, including changes to metabolism and activation of the Rgg2/Rgg3 quorum-sensing (QS) system. Subsequent experiments demonstrate that an intact Rgg2/Rgg3 QS cascade is necessary to establish a stable superficial skin infection. QS cascade activation results in increased murine morbidity and bacterial burden on the skin. This phenotype is associated with gross changes to the murine skin and with evidence of inflammation. These experiments offer a method to investigate S. pyogenes-epithelial interactions and demonstrate that a well-studied QS pathway is critical to a persistent infection.


Assuntos
Streptococcus pyogenes , Transativadores , Humanos , Animais , Camundongos , Streptococcus pyogenes/genética , Transativadores/metabolismo , Percepção de Quorum/genética , Sequência de Bases , Proteínas de Bactérias/metabolismo
16.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37707952

RESUMO

Modulation of the immune response to initiate and halt the inflammatory process occurs both at the site of injury as well as systemically. Due to the evolving role of cellular metabolism in regulating cell fate and function, tendon injuries that undergo normal and aberrant repair were evaluated by metabolic profiling to determine its impact on healing outcomes. Metabolomics revealed an increasing abundance of the immunomodulatory metabolite itaconate within the injury site. Subsequent single-cell RNA-Seq and molecular and metabolomic validation identified a highly mature neutrophil subtype, not macrophages, as the primary producers of itaconate following trauma. These mature itaconate-producing neutrophils were highly inflammatory, producing cytokines that promote local injury fibrosis before cycling back to the bone marrow. In the bone marrow, itaconate was shown to alter hematopoiesis, skewing progenitor cells down myeloid lineages, thereby regulating systemic inflammation. Therapeutically, exogenous itaconate was found to reduce injury-site inflammation, promoting tenogenic differentiation and impairing aberrant vascularization with disease-ameliorating effects. These results present an intriguing role for cycling neutrophils as a sensor of inflammation induced by injury - potentially regulating immune cell production in the bone marrow through delivery of endogenously produced itaconate - and demonstrate a therapeutic potential for exogenous itaconate following tendon injury.


Assuntos
Neutrófilos , Succinatos , Humanos , Neutrófilos/metabolismo , Succinatos/farmacologia , Succinatos/metabolismo , Succinatos/uso terapêutico , Macrófagos/metabolismo , Inflamação/metabolismo
17.
Cell Rep ; 42(9): 113024, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37610872

RESUMO

Staphylococcus epidermidis is a common microbe on human skin and has beneficial functions in the skin microbiome. However, under conditions of allergic inflammation, the abundance of S. epidermidis increases, establishing potential danger to the epidermis. To understand how this commensal may injure the host, we investigate phenol-soluble modulin (PSM) peptides produced by S. epidermidis that are similar to peptides produced by Staphylococcus aureus. Synthetic S. epidermidis PSMs induce expression of host defense genes and are cytotoxic to human keratinocytes. Deletion mutants of S. epidermidis lacking these gene products support these observations and further show that PSMs require the action of the EcpA bacterial protease to induce inflammation when applied on mouse skin with an intact stratum corneum. The expression of PSMδ from S. epidermidis is also found to correlate with disease severity in patients with atopic dermatitis. These observations show how S. epidermidis PSMs can promote skin inflammation.


Assuntos
Dermatite , Infecções Estafilocócicas , Animais , Camundongos , Humanos , Citocinas/metabolismo , Staphylococcus epidermidis , Queratinócitos/metabolismo , Inflamação , Infecções Estafilocócicas/microbiologia , Peptídeos/metabolismo
19.
Microbiol Resour Announc ; 12(7): e0046323, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37318351

RESUMO

Staphylococcus epidermidis is a ubiquitous skin commensal that has the potential to become pathogenic and cause disease. Here, we report the complete genome sequence of a S. epidermidis strain isolated from adult healthy skin that shows high expression of the virulence factor extracellular cysteine protease A (EcpA).

20.
mBio ; 14(4): e0030423, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37358277

RESUMO

Group B Streptococcus (GBS) is a Gram-positive pathobiont that can cause adverse health outcomes in neonates and vulnerable adult populations. GBS is one of the most frequently isolated bacteria from diabetic (Db) wound infections but is rarely found in the non-diabetic (nDb) wound environment. Previously, RNA sequencing of wound tissue from Db wound infections in leprdb diabetic mice showed increased expression of neutrophil factors, and genes involved in GBS metal transport such as the zinc (Zn), manganese (Mn), and putative nickel (Ni) import systems. Here, we develop a Streptozotocin-induced diabetic wound model to evaluate the pathogenesis of two invasive strains of GBS, serotypes Ia and V. We observe an increase in metal chelators such as calprotectin (CP) and lipocalin-2 during diabetic wound infections compared to nDb. We find that CP limits GBS survival in wounds of non-diabetic mice but does not impact survival in diabetic wounds. Additionally, we utilize GBS metal transporter mutants and determine that the Zn, Mn, and putative Ni transporters in GBS are dispensable in diabetic wound infection but contributed to bacterial persistence in non-diabetic animals. Collectively, these data suggest that in non-diabetic mice, functional nutritional immunity mediated by CP is effective at mitigating GBS infection, whereas in diabetic mice, the presence of CP is not sufficient to control GBS wound persistence. IMPORTANCE Diabetic wound infections are difficult to treat and often become chronic due to an impaired immune response as well as the presence of bacterial species that establish persistent infections. Group B Streptococcus (GBS) is one of the most frequently isolated bacterial species in diabetic wound infections and, as a result, is one of the leading causes of death from skin and subcutaneous infection. However, GBS is notoriously absent in non-diabetic wounds, and little is known about why this species thrives in diabetic infection. The work herein investigates how alterations in diabetic host immunity may contribute to GBS success during diabetic wound infection.


Assuntos
Diabetes Mellitus Experimental , Infecções Estreptocócicas , Infecção dos Ferimentos , Camundongos , Animais , Neutrófilos , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA