Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Cell Probes ; 74: 101956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492609

RESUMO

Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of Francisella tularensis) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in F. tularensis markedly improved detection of this protein. We therefore hypothesized that transcripts containing 580N may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of emGFPFt that had been codon-optimized for F. tularensis, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing emGFP with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in F. tularensis. These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in F. tularensis. Interestingly, expression of non-optimized 580N-emGFP produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in Escherichia coli and Klebsiella pneumoniae bacteria, 580N-emGFP produced increased green fluorescence compared to untagged emGFP (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria.


Assuntos
Francisella tularensis , Francisella tularensis/genética , Francisella tularensis/química , Francisella tularensis/metabolismo , Lisina/metabolismo , Peptídeos/genética , Códon/genética , Sinais Direcionadores de Proteínas/genética
3.
Front Microbiol ; 15: 1347488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380104

RESUMO

Francisella tularensis is a gram-negative, intracellular pathogen which can cause serious, potentially fatal, illness in humans. Species of F. tularensis are found across the Northern Hemisphere and can infect a broad range of host species, including humans. Factors affecting the persistence of F. tularensis in the environment and its epidemiology are not well understood, however, the ability of F. tularensis to enter a viable but non-culturable state (VBNC) may be important. A broad range of bacteria, including many pathogens, have been observed to enter the VBNC state in response to stressful environmental conditions, such as nutrient limitation, osmotic or oxidative stress or low temperature. To investigate the transition into the VBNC state for F. tularensis, we analyzed the attenuated live vaccine strain, F. tularensis LVS grown under standard laboratory conditions. We found that F. tularensis LVS rapidly and spontaneously enters a VBNC state in broth culture at 37°C and that this transition coincides with morphological differentiation of the cells. The VBNC bacteria retained an ability to interact with both murine macrophages and human erythrocytes in in vitro assays and were insensitive to treatment with gentamicin. Finally, we present the first transcriptomic analysis of VBNC F. tularensis, which revealed clear differences in gene expression, and we identify sets of differentially regulated genes which are specific to the VBNC state. Identification of these VBNC specific genes will pave the way for future research aimed at dissecting the molecular mechanisms driving entry into the VBNC state.

4.
Front Cell Infect Microbiol ; 12: 979693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237421

RESUMO

Francisella tularensis is a gram negative, intracellular pathogen that is the causative agent of the potentially fatal disease, tularemia. During infection, F. tularensis is engulfed by and replicates within host macrophages. Additionally, this bacterium has also been shown to invade human erythrocytes and, in both cases, the Type Six Secretion System (T6SS) is required for these host-pathogen interaction. One T6SS effector protein, PdpC, is important for macrophage infection, playing a role in phagolysosomal escape and intracellular replication. To determine if PdpC also plays a role in erythrocyte invasion, we constructed a pdpC-null mutant in the live vaccine strain, F. tularensis LVS. We show that PdpC is required for invasion of human and sheep erythrocytes during in vitro assays and that reintroduction of a copy of pdpC, in trans, rescues this phenotype. The interaction with human erythrocytes was further characterized using double-immunofluorescence microscopy to show that PdpC is required for attachment of F. tularensis LVS to erythrocytes as well as invasion. To learn more about the role of PdpC in erythrocyte invasion we generated a strain of F. tularensis LVS expressing pdpC-emgfp. PdpC-EmGFP localizes as discrete foci in a subset of F. tularensis LVS cells grown in broth culture and accumulates in erythrocytes during invasion assays. Our results are the first example of a secreted effector protein of the T6SS shown to be involved in erythrocyte invasion and indicate that PdpC is secreted into erythrocytes during invasion.


Assuntos
Francisella tularensis , Tularemia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas , Eritrócitos , Humanos , Ovinos , Tularemia/microbiologia , Vacinas Atenuadas
5.
Sci Rep ; 11(1): 24004, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907348

RESUMO

Insects are now well recognized as biologically relevant alternative hosts for dozens of mammalian pathogens and they are routinely used in microbial pathogenesis studies. Unfortunately, these models have yet to be incorporated into the drug development pipeline. The purpose of this work was to begin to evaluate the utility of orange spotted (Blaptica dubia) cockroaches in early antibiotic characterization. To determine whether these model hosts could exhibit mortality when infected with bacteria that are pathogenic to humans, we subjected B. dubia roaches to a range of infectious doses of Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii to identify the medial lethal dose. These results showed that lethal disease did not develop following infection of high doses of S. aureus, and A. baumannii. However, cockroaches infected with E. coli and K. pneumoniae succumbed to infection (LD50s of 5.82 × 106 and 2.58 × 106 respectively) suggesting that this model may have limitations based on pathogen specificity. However, because these cockroaches were susceptible to infection from E. coli and K. pneumoniae, we used these bacterial strains for subsequent antibiotic characterization studies. These studies suggested that ß-lactam antibiotic persistence and dose was associated with reduction of hemolymph bacterial burden. Moreover, our data indicated that the reduction of bacterial CFU was directly due to the drug activity. Altogether, this work suggests that the orange-spotted cockroach infection model provides an alternative in vivo setting from which antibiotic efficacy can be evaluated.


Assuntos
Bactérias , Infecções Bacterianas , Baratas/microbiologia , Resistência beta-Lactâmica , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Modelos Animais de Doenças , Humanos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
6.
Antibiotics (Basel) ; 10(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439042

RESUMO

The phenoxazine dye resazurin exhibits bactericidal activity against the Gram-negative pathogens Francisella tularensis and Neisseria gonorrhoeae. One resazurin derivative, resorufin pentyl ether, significantly reduces vaginal colonization by Neisseria gonorrhoeae in a mouse model of infection. The narrow spectrum of bacteria susceptible to resazurin and its derivatives suggests these compounds have a novel mode of action. To identify potential targets of resazurin and mechanisms of resistance, we isolated mutants of F. tularensis subsp. holarctica live vaccine strain (LVS) exhibiting reduced susceptibility to resazurin and performed whole genome sequencing. The genes pilD (FTL_0959) and dipA (FTL_1306) were mutated in half of the 46 resazurin-resistant (RZR) strains sequenced. Complementation of select RZR LVS isolates with wild-type dipA or pilD partially restored sensitivity to resazurin. To further characterize the role of dipA and pilD in resazurin susceptibility, a dipA deletion mutant, ΔdipA, and pilD disruption mutant, FTL_0959d, were generated. Both mutants were less sensitive to killing by resazurin compared to wild-type LVS with phenotypes similar to the spontaneous resazurin-resistant mutants. This study identified a novel role for two genes dipA and pilD in F. tularensis susceptibility to resazurin.

7.
J Bacteriol ; 202(14)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32366588

RESUMO

Francisella tularensis is an intracellular pathogen and the causative agent of tularemia. The F. tularensis type six secretion system (T6SS) is required for a number of host-pathogen interactions, including phagolysosomal escape and invasion of erythrocytes. One known effector of the T6SS, OpiA, has recently been shown to be a phosphatidylinositol-3 kinase. To investigate the role of OpiA in erythrocyte invasion, we constructed an opiA-null mutant in the live vaccine strain, F. tularensis LVS. OpiA was not required for erythrocyte invasion; however, deletion of opiA affected growth of F. tularensis LVS in broth cultures in a medium-dependent manner. We also found that opiA influenced cell size, gentamicin sensitivity, bacterial viability, and the lipid content of F. tularensis A fluorescently tagged OpiA (OpiA-emerald-green fluorescent protein [EmGFP]) accumulated at the cell poles of F. tularensis, which is consistent with the location of the T6SS. However, OpiA-EmGFP also exhibited a highly dynamic localization, and this fusion protein was detected in erythrocytes and THP-1 cells in vitro, further supporting that OpiA is secreted. Similar to previous reports with F. novicida, our data demonstrated that opiA had a minimal effect on intracellular replication of F. tularensis in host immune cells in vitro However, THP-1 cells infected with the opiA mutant produced modestly (but significantly) higher levels of the proinflammatory cytokine tumor necrosis factor alpha compared to these host cells infected with wild-type bacteria. We conclude that, in addition to its role in host-pathogen interactions, our results reveal that the function of opiA is central to the biology of F. tularensis bacteria.IMPORTANCEF. tularensis is a pathogenic intracellular pathogen that is of importance for public health and strategic defense. This study characterizes the opiA gene of F. tularensis LVS, an attenuated strain that has been used as a live vaccine but that also shares significant genetic similarity to related Francisella strains that cause human disease. The data presented here provide the first evidence of a T6SS effector protein that affects the physiology of F. tularensis, namely, the growth, cell size, viability, and aminoglycoside resistance of F. tularensis LVS. This study also adds insight into our understanding of OpiA as a determinant of virulence. Finally, the fluorescence fusion constructs presented here will be useful tools for dissecting the role of OpiA in infection.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/metabolismo , Tularemia/microbiologia , Sistemas de Secreção Tipo V/metabolismo , Animais , Proteínas de Bactérias/genética , Polaridade Celular , Embrião de Galinha , Galinhas , Francisella tularensis/genética , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Viabilidade Microbiana , Transporte Proteico , Células THP-1 , Tularemia/genética , Tularemia/imunologia , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/imunologia , Sistemas de Secreção Tipo V/genética
8.
Virulence ; 10(1): 643-656, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31314675

RESUMO

Pathogens enhance their survival during infections by manipulating host defenses. Francisella tularensis evades innate immune responses, which we have found to be dependent on an understudied gene ybeX (FTL_0883/FTT_0615c). To understand the function of YbeX, we sought protein interactors in F. tularensis subsp. holarctica live vaccine strain (LVS). An unstudied Francisella protein co-immunoprecipitated with recombinant YbeX, which is a predicted glycosyltransferase with a DXD-motif. There are up to four genomic copies of this gene with identical sequence in strains of F. tularensis pathogenic to humans, despite ongoing genome decay. Disruption mutations were generated by intron insertion into all three copies of this glycosyltransferase domain containing gene in LVS, gdcA1-3. The resulting strains stimulated more cytokines from macrophages in vitro than wild-type LVS and were attenuated in two in vivo infection models. GdcA was released from LVS during culture and was sufficient to block NF-κB activation when expressed in eukaryotic cells. When co-expressed in zebrafish, GdcA and YbeX were synergistically lethal to embryo development. Glycosyltransferases with DXD-motifs are found in a variety of pathogens including NleB, an Escherichia coli type-III secretion system effector that inhibits NF-κB by antagonizing death receptor signaling. To our knowledge, GdcA is the first DXD-motif glycosyltransferase that inhibits NF-κB in immune cells. Together, these findings suggest DXD-motif glycosyltransferases may be a conserved virulence mechanism used by pathogenic bacteria to remodel host defenses.


Assuntos
Proteínas de Bactérias/imunologia , Francisella tularensis/enzimologia , Glicosiltransferases/imunologia , Interações Hospedeiro-Patógeno , Animais , Proteínas de Bactérias/genética , Citocinas , Feminino , Francisella tularensis/genética , Glicosiltransferases/genética , Humanos , Imunidade Inata , Células Jurkat , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Mariposas , Mutação , Tularemia/imunologia , Tularemia/microbiologia , Virulência , Peixe-Zebra
9.
PLoS Pathog ; 15(6): e1007825, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220184

RESUMO

Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.


Assuntos
Toxinas Bacterianas/metabolismo , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Infecções por Proteus/metabolismo , Proteus/metabolismo , Infecções por Serratia/metabolismo , Serratia marcescens/metabolismo , Animais , Toxinas Bacterianas/genética , Morte Celular , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Epitélio Corneano/microbiologia , Epitélio Corneano/patologia , Humanos , Camundongos , Perforina/genética , Perforina/metabolismo , Proteus/genética , Infecções por Proteus/genética , Infecções por Proteus/microbiologia , Infecções por Proteus/patologia , Células RAW 264.7 , Infecções por Serratia/genética , Infecções por Serratia/microbiologia , Infecções por Serratia/patologia , Serratia marcescens/genética , Suínos , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
10.
Health Prof Educ ; 5(2): 103-110, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35224312

RESUMO

PURPOSE: A physician assistant (PA) is a state-licensed, nationally certified healthcare professional who practices medicine on healthcare teams with physicians and other providers. PAs practice medicine across the US (all 50 states, the District of Columbia, and the US territories). In recent years, the demand for clinicians has increased dramatically which has led to an increase in the number of practicing PAs. To meet this growing demand for healthcare providers, identifying applicants capable of overcoming the challenges associated with the PA educational track in addition to the corresponding clinical training is crucial. METHOD: In this paper, we reviewed the literature and discuss preadmission factors and their relationship toward completion of PA graduate programs and successfully passing the national certification examination (PANCE). RESULTS: Previous studies indicated a weak positive association between verbal GRE scores and success on the PANCE. Moreover, undergraduate GPA, and taking a variety of undergraduate science prerequisites correlates with passing the PANCE. DISCUSSION: Investigations of success correlates of other professional programs indicated that psychological factors may have potential for use in predicting whether an applicant would be successful in PA school. These include tests for emotional intelligence and particular personality characteristics.

11.
J Opioid Manag ; 14(6): 445-452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30629281

RESUMO

Neonatal abstinence syndrome (NAS) is a group of problems associated with withdrawal symptoms of a newborn who was exposed to maternal opiate use while in the womb. West Virginia (WV) is of utmost concern as this state exhibits among the highest rates of opioid abuse and consequently, NAS. In this manuscript, we review factors associated with the prevalence of NAS in WV. We provide evidence suggesting that states exhibiting high Medicaid participation demonstrate a high NAS rate, further associating these two factors. Although a similar trend was observed in the substate geographic regions of WV, the presence of regional treatment facilities was negatively associated with NAS prevalence in WV, possibly suggesting that the establishment and utilization of more of these facilities may reduce NAS. Future research investigating factors that contribute to NAS is essential for the elimination of this syndrome.


Assuntos
Analgésicos Opioides/efeitos adversos , Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides , Transtornos Relacionados ao Uso de Substâncias/complicações , Cocaína/efeitos adversos , Alucinógenos/efeitos adversos , Humanos , Recém-Nascido , Síndrome de Abstinência Neonatal/epidemiologia , Prevalência , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Estados Unidos , West Virginia/epidemiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-28536678

RESUMO

Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU, or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks.


Assuntos
Eritrócitos/microbiologia , Eritrócitos/fisiologia , Francisella tularensis/patogenicidade , Tularemia/sangue , Tularemia/microbiologia , Actinas , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Endocitose , Eritrócitos/patologia , Feminino , Francisella tularensis/crescimento & desenvolvimento , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Ixodes/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fagocitose , Espectrina/farmacologia , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/microbiologia , Sistemas de Secreção Tipo VI/genética
13.
PLoS One ; 12(5): e0175157, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28486521

RESUMO

Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.


Assuntos
Aedes/microbiologia , Flores , Francisella tularensis/patogenicidade , Mosquitos Vetores , Néctar de Plantas , Tularemia/transmissão , Animais
14.
Artigo em Inglês | MEDLINE | ID: mdl-28203387

RESUMO

The prevalence of opioid abuse in the United States has been steadily increasing over the last several years among many major demographics, including pregnant women. Rise in prenatal opioid abuse has resulted in subsequent escalation of neonatal abstinence syndrome incidence, prompting the US Congress to pass the Protecting Our Infants Act of 2015. This act specifically calls for a critical review of current treatment options for prenatal opioid abuse which may ultimately lead to the development of better therapies and a decreased incidence of neonatal abstinence syndrome. Currently, the American College of Obstetricians and Gynecologists recommends methadone, buprenorphine, or buprenorphine/naloxone in the treatment of prenatal opioid abuse. In this review, each maintenance therapy treatment option is discussed and compared revealing inconsistencies in postpartum retention rates, effects on fetal development, and availability to patients due to restrictions in health care coverage. Although each of these treatment options reduces opioid abuse and potential negative outcomes for the fetus, the shortcomings of these drugs highlight the overarching need for an improved standard of care. Drug developers and lawmakers should consider that affordability, coverage by health insurance, and success in retention rates substantially impacts the decision of the patient and healthcare provider regarding utilization of a particular opioid maintenance therapy.

15.
Proc W Va Acad Sci ; 89(3): 34-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29578544

RESUMO

Francisella tularensis is a zoonotic bacterial pathogen that causes severe disease in a wide range of host animals, including humans. Well-developed murine models of F. tularensis pathogenesis are available, but they do not meet the needs of all investigators. However, researchers are increasingly turning to insect host systems as a cost-effective alternative that allows greater increased experimental throughput without the regulatory requirements associated with the use of mammals in biomedical research. Unfortunately, the utility of previously-described insect hosts is limited because of temperature restriction, short lifespans, and concerns about the immunological status of insects mass-produced for other purposes. Here, we present a novel host species, the orange spotted (OS) cockroach (Blaptica dubia), that overcomes these limitations and is readily infected by F. tularensis. Intrahemocoel inoculation was accomplished using standard laboratory equipment and lethality was directly proportional to the number of bacteria injected. Progression of infection differed in insects housed at low and high temperatures and F. tularensis mutants lacking key virulence components were attenuated in OS cockroaches. Finally, antibiotics were delivered to infected OS cockroaches by systemic injection and controlled feeding; in the latter case, protection correlated with oral bioavailability in mammals. Collectively, these results demonstrate that this new host system provides investigators with a new tool capable of interrogating F. tularensis virulence and immune evasion in situations where mammalian models are not available or appropriate, such as undirected screens of large mutant libraries.

16.
J Pharmacogn Nat Prod ; 2(3)2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27656692

RESUMO

Some insects release scented compounds as a defense against predators that also exhibit antimicrobial activity. Trans-2-octenal and trans-2-decenal are the major alarm aldehydes responsible for the scent of Halyomorpha halys, the brown marmorated stink bug. Previous research has shown these aldehydes are antifungal and produce an antipredatory effect, but have never been tested for antibacterial activity. We hypothesized that these compounds functioned similarly to the analogous multifunctional action of earwig compounds, so we tested whether these aldehydes could inhibit the growth of bacteria. Disk diffusion assays indicated that these aldehydes significantly inhibited the growth of Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, in vitro. Moreover, mealworm beetles (Tenebrio molitor) coated in stink bug aldehydes showed a substantial reduction in bacterial colonization compared to vehicle-treated insects. These results suggest that brown marmorated stinkbug aldehydes are indeed antibacterial agents and serve a multifunctional role for this insect. Therefore, stinkbug aldehydes may have potential for use as chemical antimicrobials.

17.
Int J Antimicrob Agents ; 48(4): 367-72, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27451856

RESUMO

Neisseria gonorrhoeae is the cause of the second most common sexually transmitted bacterial infection, with ca. 80 million new cases of gonorrhoea reported annually. The recent emergence of clinical isolates resistant to the last monotherapy against this bacterium, the cephalosporins, illustrates the need for new antigonococcal agents. Here we have characterised a new group of antimicrobials based on the compound resazurin that exhibits robust activity against N. gonorrhoeae in vitro. Resazurin inhibits the growth of a broad range of N. gonorrhoeae isolates, including those resistant to multiple antibiotics. Furthermore, treatment of human endometrial cells infected with N. gonorrhoeae with resazurin significantly reduces the number of intracellular bacteria. Whilst resazurin exhibited potent in vitro antimicrobial activity, in vivo resazurin did not limit the colonisation of mice with N. gonorrhoeae following vaginal infection. The ineffectiveness of resazurin in vivo is likely due to its interaction with serum albumin, which completely diminishes its antimicrobial activity. However, treatment of mice with a resazurin analogue (resorufin pentyl ether) that maintains its antimicrobial activity in the presence of serum albumin approached a significant decrease in the percentage of mice vaginally colonised. This treatment also decreased vaginal colonisation by N. gonorrhoeae over time. Together, these data suggest that resazurin derivatives have potential for the treatment of gonorrhoea.


Assuntos
Antibacterianos/farmacologia , Gonorreia/tratamento farmacológico , Indicadores e Reagentes/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Oxazinas/farmacologia , Xantenos/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Gonorreia/microbiologia , Humanos , Camundongos Endogâmicos BALB C , Neisseria gonorrhoeae/isolamento & purificação , Resultado do Tratamento
18.
Artigo em Inglês | MEDLINE | ID: mdl-27274909

RESUMO

The American chestnut (Castanea dentata) was once the dominant canopy tree along the eastern region of the United States. Cryphonectria parasitica, the causative agent of chestnut blight, was introduced from Asia in the early 1900's, and obliterated the chestnut population within 50 years. We sought to identify environmental microbes capable of producing factors that were fungicidal or inhibited growth of C. parasitica in the hopes developing a biological control of chestnut blight. We isolated a filamentous fungus that significantly inhibited the growth of C. parasitica upon co-cultivation. Extracellular fractions of this fungal isolate prevented C. parasitica growth, indicating that a potential fungicide was produced by the novel isolate. Sequence analysis of 18S rRNA identified this inhibitory fungus as Penicillium chrysogenum. Furthermore, these extracellular fractions were tested as treatments for blight in vivo using chestnut saplings. Scarred saplings that were treated with the P. chrysogenum extracellular fractions healed subjectively better than those without treatment when inoculated with C. parasitica. These data suggest that material secreted by P. chrysogenum could be used as a treatment for the American chestnut blight. This work may assist the reclamation of the American chestnut in association with breeding programs and blight attenuation. Specifically, treatment of small groves under the right conditions may allow them to remain blight free. Future work will explore the mechanism of action and specific target of the extracellular fraction.

19.
Front Microbiol ; 7: 37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858709

RESUMO

Gentamicin (Gm) is an aminoglycoside commonly used to treat bacterial infections such as tularemia - the disease caused by Francisella tularensis. In addition to being pathogenic, F. tularensis is found in environmental niches such as soil where this bacterium likely encounters Gm producers (Micromonospora sp.). Here we show that F. tularensis exhibits increased resistance to Gm at ambient temperature (26°C) compared to mammalian body temperature (37°C). To evaluate whether F. tularensis was less permeable to Gm at 26°C, a fluorescent marker [Texas Red (Tr)] was conjugated with Gm, yielding Tr-Gm. Bacteria incubated at 26°C showed reduced fluorescence compared to those at 37°C when exposed to Tr-Gm suggesting that uptake of Gm was reduced at 26°C. Unconjugated Gm competitively inhibited uptake of Tr-Gm, demonstrating that this fluorescent compound was taken up similarly to unconjugated Gm. Lysates of F. tularensis bacteria incubated with Gm at 37°C inhibited the growth of Escherichia coli significantly more than lysates from bacteria incubated at 26°C, further indicating reduced uptake at this lower temperature. Other facultative pathogens (Listeria monocytogenes and Klebsiella pneumoniae) exhibited increased resistance to Gm at 26°C suggesting that the results generated using F. tularensis may be generalizable to diverse bacteria. Regulation of the uptake of antibiotics provides a mechanism by which facultative pathogens survive alongside antibiotic-producing microbes in nature.

20.
J Pain Manag Med ; 2(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149962

RESUMO

In the United States, roughly $600 billion is spent on pain management - usually in the form of addictive opioid drugs. Due to the dangers associated with long-term opiate-based pain medication, the development of additional strategies for chronic pain management is warranted. The advent of smartphones and associated technology has provided healthcare providers with a unique opportunity to provide pain management support. This review summarizes of the use of technology to supplement chronic pain management regimens. Smartphone and internet-based applications that employ online journals facilitate improved communication between patient and clinician and allow for more personalized care and improved pain management. For instance, the e-Ouch application provides a platform for pain logs as well as feedback and coaching to patients via Twitter postings and blogs. Other applications provide online resources and blogs to improve patient education, which has shown to relieve patient symptoms through lifestyle modification. Internet-delivered cognitive behavioral therapy (CBT) focuses on the psychological coping mechanisms. The application of technology and smartphone apps toward pain management shows promise toward reducing the use of opioids in pain management, but has yet to be incorporated as a standard practice. More robust studies critically evaluating the efficacy of these technology-based therapies need to be conducted before standardization and insurance coverage can become reality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA