Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 248(6): 1107-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26233565

RESUMO

SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are cell volume-sensitive kinases regulated by WNK (with-no-K[Lys]) kinases. SPAK/OSR1 regulate several channels and carriers. SPAK/OSR1 sensitive functions include neuronal excitability. Orchestration of neuronal excitation involves the excitatory glutamate transporters EAAT1 and EAAT2. Sensitivity of those carriers to SPAK/OSR1 has never been shown. The present study thus explored whether SPAK and/or OSR1 contribute to the regulation of EAAT1 and/or EAAT2. To this end, cRNA encoding EAAT1 or EAAT2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type SPAK or wild-type OSR1, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 or catalytically inactive (D164A)OSR1. The glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1- and in EAAT2-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of SPAK and OSR1. As shown for EAAT2, SPAK, and OSR1 decreased significantly the maximal transport rate but significantly enhanced the affinity of the carrier. The effect of wild-type SPAK/OSR1 on EAAT1 and EAAT2 was mimicked by (T233E)SPAK and (T185E)OSR1, but not by (T233A)SPAK, (D212A)SPAK, (T185A)OSR1, or (D164A)OSR1. Coexpression of either SPAK or OSR1 decreased the EAAT2 protein abundance in the cell membrane of EAAT2-expressing oocytes. In conclusion, SPAK and OSR1 are powerful negative regulators of the excitatory glutamate transporters EAAT1 and EAAT2.


Assuntos
Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Regulação para Baixo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/genética , Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Mutação , Oócitos/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , Xenopus laevis
2.
Nephron ; 130(3): 221-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26112741

RESUMO

BACKGROUND/AIMS: Kinases involved in the regulation of epithelial transport include SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1). SPAK and OSR1 are both regulated by WNK (with-no-K(Lys)) kinases. The present study explored whether SPAK and/or OSR1 influence the excitatory amino acid transporter EAAT3, which accomplishes glutamate and aspartate transport in kidney, intestine and brain. METHODS: cRNA encoding EAAT3 was injected into Xenopus laevis oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 and catalytically inactive (D164A)OSR1. Glutamate-induced current was taken as measure of electrogenic glutamate transport and was quantified utilizing dual electrode voltage clamp. Furthermore, Ussing chamber was employed to determine glutamate transport in the intestine from gene-targeted mice carrying WNK insensitive SPAK (spak(tg/tg)) and from corresponding wild-type mice (spak(+/+)). RESULTS: EAAT3 activity was significantly decreased by wild-type SPAK and (T233E)SPAK, but not by (T233A)SPAK and (D212A)SPAK. SPAK decreased maximal transport rate without affecting significantly affinity of the carrier. Similarly, EAAT3 activity was significantly downregulated by wild-type OSR1 and (T185E)OSR1, but not by (T185A)OSR1 and (D164A)OSR1. Again OSR1 decreased maximal transport rate without affecting significantly affinity of the carrier. Intestinal electrogenic glutamate transport was significantly lower in spak(+/+) than in spak(tg/tg) mice. CONCLUSION: Both, SPAK and OSR1 are negative regulators of EAAT3 activity.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ácido Aspártico/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , RNA Complementar/biossíntese , RNA Complementar/genética , Água/metabolismo , Xenopus laevis
3.
Kidney Blood Press Res ; 39(6): 546-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531585

RESUMO

BACKGROUND/AIMS: Transport regulation involves several kinases including SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), which are under control of WNK (with-no-K[Lys]) kinases. The present study explored whether SPAK and/or OSR1 participate in the regulation of the creatine transporter CreaT (SLC6A8), which accomplishes Na+ coupled cellular uptake of creatine in several tissues including kidney, intestine, heart, skeletal muscle and brain. METHODS: cRNA encoding SLC6A8 was injected into Xenopus laevis oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 and catalytically inactive (D164A)OSR1. Transporter activity was determined from creatine (1 mM) induced current utilizing dual electrode voltage clamp. RESULTS: Coexpression of wild-type SPAK and of (T233E)SPAK, but not of (T233A)SPAK or of (D212A)SPAK was followed by a significant decrease of creatine induced current in SLC6A8 expressing oocytes. Coexpression of SPAK significantly decreased maximal transport rate. Coexpression of wild-type OSR1, (T185E)OSR1 and (T185A)OSR1 but not of (D164A)OSR1 significantly negatively regulated SLC6A8 activity. OSR1 again decreased significantly maximal transport rate. CONCLUSIONS: Both, SPAK and OSR1, are negative regulators of the creatine transporter SLC6A8.


Assuntos
Proteínas do Tecido Nervoso/biossíntese , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/biossíntese , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Creatina/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas do Tecido Nervoso/genética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Distribuição Tecidual , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA