Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1967): 20211697, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35042419

RESUMO

Humans were considered external drivers in much foundational ecological research. A recognition that humans are embedded in the complex interaction networks we study can provide new insight into our ecological paradigms. Here, we use time-series data spanning three decades to explore the effects of human harvesting on otter-urchin-kelp trophic cascades in southeast Alaska. These effects were inferred from variation in sea urchin and kelp abundance following the post fur trade repatriation of otters and a subsequent localized reduction of otters by human harvest in one location. In an example of a classic trophic cascade, otter repatriation was followed by a 99% reduction in urchin biomass density and a greater than 99% increase in kelp density region wide. Recent spatially concentrated harvesting of otters was associated with a localized 70% decline in otter abundance in one location, with urchins increasing and kelps declining in accordance with the spatial pattern of otter occupancy within that region. While the otter-urchin-kelp trophic cascade has been associated with alternative community states at the regional scale, this research highlights how small-scale variability in otter occupancy, ostensibly due to spatial variability in harvesting or the risk landscape for otters, can result in within-region patchiness in these community states.


Assuntos
Kelp , Lontras , Animais , Ecossistema , Cadeia Alimentar , Florestas , Humanos , Ouriços-do-Mar
2.
Glob Chang Biol ; 26(1): 54-67, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743515

RESUMO

The environmental conditions in the ocean have long been considered relatively more stable through time compared to the conditions on land. Advances in sensing technologies, however, are increasingly revealing substantial fluctuations in abiotic factors over ecologically and evolutionarily relevant timescales in the ocean, leading to a growing recognition of the dynamism of the marine environment as well as new questions about how this dynamism may influence species' vulnerability to global environmental change. In some instances, the diurnal or seasonal variability in major environmental change drivers, such as temperature, pH and seawater carbonate chemistry, and dissolved oxygen, can exceed the changes expected with continued anthropogenic global change. While ocean global change biologists have begun to experimentally test how variability in environmental conditions mediates species' responses to changes in the mean, the extensive literature on species' adaptations to temporal variability in their environment and the implications of this variability for their evolutionary responses has not been well integrated into the field. Here, we review the physiological mechanisms underlying species' responses to changes in temperature, pCO2 /pH (and other carbonate parameters), and dissolved oxygen, and discuss what is known about behavioral, plastic, and evolutionary strategies for dealing with variable environments. In addition, we discuss how exposure to variability may influence species' responses to changes in the mean conditions and highlight key research needs for ocean global change biology.


Assuntos
Ecologia , Ecossistema , Carbonatos , Mudança Climática , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
3.
Mar Environ Res ; 143: 49-59, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30448238

RESUMO

High latitude seas will be among the first marine systems to be impacted by ocean acidification (OA). Previous research studying the effects of OA on the pteropod, Limacina helicina antarctica, has led this species to be identified as a sentinel organism for OA in polar oceans. Here, we present gene expression data on L. h. antarctica, collected in situ during the seasonal transition from early spring to early summer. Our findings suggest that after over-wintering under seasonal sea ice, pteropods progress toward full maturity in the early summer when food becomes increasingly available. This progression is highlighted by a dramatic shift in gene expression that supports the development of cytoskeletal structures, membrane ion transportation, and metabolically important enzymes associated with glycolysis. In addition, we observed signs of defense of genomic integrity and maturation as evidenced by an up-regulation of genes involved in DNA replication, DNA repair, and gametogenesis. These data contribute to a broader understanding of the life-cycle dynamics for L. h. antarctica and provide key insights into the transcriptomic signals of pteropod maturation and growth during this key seasonal transition.


Assuntos
Gastrópodes , Espécies Sentinelas , Transcriptoma , Animais , Regiões Antárticas , Gastrópodes/genética , Gastrópodes/metabolismo , Estações do Ano , Espécies Sentinelas/genética , Espécies Sentinelas/metabolismo
4.
Conserv Physiol ; 5(1): cox064, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218223

RESUMO

The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA