Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 16(1): 56, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076932

RESUMO

OBJECTIVE: To analyse the transcriptional profiles of the pir multigene family of Plasmodium chabaudi chabaudi in male and female gametocytes isolated from the blood of infected mice. RESULTS: Infected red blood cells containing female and male P. chabaudi gametocytes transcribe a distinct set of genes encoded by the multigene family pir. The overall patterns are similar to what has been observed in the close relative P. berghei, but here we show that gametocyte-associated pir genes are distinct from those involved in chronic blood-stage infection and highlight a male-associated pir gene which should be the focus of future studies.


Assuntos
Malária , Parasitos , Plasmodium chabaudi , Masculino , Feminino , Animais , Camundongos , Plasmodium chabaudi/genética , Malária/parasitologia
2.
Curr Res Immunol ; 4: 100054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593995

RESUMO

Advances in transcriptomics and proteomics have revealed that different life-cycle stages of the malaria parasite, Plasmodium, share antigens, thus allowing for the possibility of eliciting immunity to a parasite life-cycle stage that has not been experienced before. Using the Plasmodium chabaudi (AS strain) model of malaria in mice, we investigated how isolated exposure to blood-stage infection, bypassing a liver-stage infection, yields significant protection to sporozoite challenge resulting in lower liver parasite burdens. Antibodies are the main immune driver of this protection. Antibodies induced by blood-stage infection recognise proteins on the surface of sporozoites and can impair sporozoite gliding motility in vitro, suggesting a possible function in vivo. Furthermore, mice lacking B cells and/or secreted antibodies are not protected against a sporozoite challenge in mice that had a previous blood-stage infection. Conversely, effector CD4+ and CD8+ T cells do not seem to play a role in protection from sporozoite challenge of mice previously exposed only to the blood stages of P. chabaudi. The protective response against pre-erythrocytic stages can be induced by infections initiated by serially passaged blood-stage parasites as well as recently mosquito transmitted parasites and is effective against a different strain of P. chabaudi (CB strain), but not against another rodent malaria species, P. yoelii. The possibility to induce protective cross-stage antibodies advocates the need to consider both stage-specific and cross-stage immune responses to malaria, as natural infection elicits exposure to all life-cycle stages. Future investigation into these cross-stage antibodies allows the opportunity for candidate antigens to contribute to malaria vaccine development.

3.
Front Cell Infect Microbiol ; 12: 877253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782145

RESUMO

Plasmodium multigene families are thought to play important roles in the pathogenesis of malaria. Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium species. However, their expression pattern and localisation remain to be elucidated. Understanding protein subcellular localisation is fundamental to reveal the functional importance and cell-cell interactions of the PIR proteins. Here, we use the rodent malaria parasite, Plasmodium chabaudi chabaudi, as a model to investigate the localisation pattern of this gene family. We found that most PIR proteins are co-expressed in clusters during acute and chronic infection; members of the S7 clade are predominantly expressed during the acute-phase, whereas members of the L1 clade dominate the chronic-phase of infection. Using peptide antisera specific for S7 or L1 PIRS, we show that these PIRs have different localisations within the infected red blood cells. S7 PIRs are exported into the infected red blood cell cytoplasm where they are co-localised with parasite-induced host cell modifications termed Maurer's clefts, whereas L1 PIRs are localised on or close to the parasitophorous vacuolar membrane. This localisation pattern changes following mosquito transmission and during progression from acute- to chronic-phase of infection. The presence of PIRs in Maurer's clefts, as seen for Plasmodium falciparum RIFIN and STEVOR proteins, might suggest trafficking of the PIRs on the surface of the infected erythrocytes. However, neither S7 nor L1 PIR proteins detected by the peptide antisera are localised on the surface of infected red blood cells, suggesting that they are unlikely to be targets of surface variant-specific antibodies or to be directly involved in adhesion of infected red blood cells to host cells, as described for Plasmodium falciparum VAR proteins. The differences in subcellular localisation of the two major clades of Plasmodium chabaudi PIRs across the blood cycle, and the apparent lack of expression on the red cell surface strongly suggest that the function(s) of this gene family may differ from those of other multigene families of Plasmodium, such as the var genes of Plasmodium falciparum.


Assuntos
Malária , Plasmodium , Animais , Eritrócitos , Soros Imunes/metabolismo , Plasmodium falciparum/genética
4.
Malar J ; 20(1): 445, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823519

RESUMO

BACKGROUND: Plasmodium interspersed repeat (pir) is the largest multigene family in the genomes of most Plasmodium species. A variety of functions for the PIR proteins which they encode have been proposed, including antigenic variation, immune evasion, sequestration and rosetting. However, direct evidence for these is lacking. The repetitive nature of the family has made it difficult to determine function experimentally. However, there has been some success in using gene expression studies to suggest roles for some members in virulence and chronic infection. METHODS: Here pir gene expression was examined across the life cycle of Plasmodium berghei using publicly available RNAseq data-sets, and at high resolution in the intraerythrocytic development cycle using new data from Plasmodium chabaudi. RESULTS: Expression of pir genes is greatest in stages of the parasite which invade and reside in red blood cells. The marked exception is that liver merozoites and male gametocytes produce a very large number of pir gene transcripts, notably compared to female gametocytes, which produce relatively few. Within the asexual blood stages different subfamilies peak at different times, suggesting further functional distinctions. Representing a subfamily of its own, the highly conserved ancestral pir gene warrants further investigation due to its potential tractability for functional investigation. It is highly transcribed in multiple life cycle stages and across most studied Plasmodium species and thus is likely to play an important role in parasite biology. CONCLUSIONS: The identification of distinct expression patterns for different pir genes and subfamilies is likely to provide a basis for the design of future experiments to uncover their function.


Assuntos
Expressão Gênica , Genes de Protozoários , Estágios do Ciclo de Vida/genética , Família Multigênica , Plasmodium berghei/genética , Plasmodium chabaudi/genética
5.
Curr Res Immunol ; 2: 104-119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532703

RESUMO

Natural infection with Plasmodium parasites, the causative agents of malaria, occurs via mosquito vectors. However, most of our knowledge of the immune response to the blood stages of Plasmodium is from infections initiated by injection of serially blood-passaged infected red blood cells, resulting in an incomplete life cycle in the mammalian host. Vector transmission of the rodent malaria parasite, Plasmodium chabaudi chabaudi AS has been shown to give rise to a more attenuated blood-stage infection in C57Bl/6J mice, when compared to infections initiated with serially blood-passaged P. chabaudi-infected red blood cells. In mouse models, the host immune response induced by parasites derived from natural mosquito transmission is likely to more closely resemble the immune responses to Plasmodium infections in humans. It is therefore important to determine how the host response differs between the two types of infections. As the spleen is considered to be a major contributor to the protective host response to P. chabaudi, we carried out a comparative transcriptomic analysis of the splenic response to recently mosquito-transmitted and serially blood-passaged parasites in C57Bl/6J mice. The attenuated infection arising from recently mosquito-transmitted parasites is characterised by an earlier and stronger myeloid- and IFNγ-related response. Analyses of spleen lysates from the two infections similarly showed stronger or earlier inflammatory cytokine and chemokine production in the recently mosquito-transmitted blood-stage infections. Furthermore, tissue macrophages, including red pulp macrophages, and IFNγ-signalling in myeloid cells, are required for the early control of P. chabaudi recently mosquito-transmitted parasites, thus contributing to the attenuation of mosquito-transmitted infections. The molecules responsible for this early activation response to recently-transmitted blood-stage parasites in mice would be important to identify, as they may help to elucidate the nature of the initial interactions between blood-stage parasites and the host immune system in naturally transmitted malaria.

6.
Sci Data ; 7(1): 253, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753619

RESUMO

Malaria is a devastating infectious disease and the immune response is complex and dynamic during a course of a malarial infection. Rodent malaria models allow detailed time-series studies of the host response in multiple organs. Here, we describe two comprehensive datasets containing host transcriptomic data from both the blood and spleen throughout an acute blood stage infection of virulent or avirulent Plasmodium chabaudi infection in C57BL/6 mice. The mRNA expression profiles were generated using Illumina BeadChip microarray. These datasets provide a groundwork for comprehensive and comparative studies on host gene expression in early, acute and recovering phases of a blood stage infection in both the blood and spleen, to explore the interaction between the two, and importantly to investigate whether these responses differ in virulent and avirulent infections.


Assuntos
Sangue/metabolismo , Malária/metabolismo , Baço/metabolismo , Transcriptoma , Animais , Sangue/parasitologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Baço/parasitologia
7.
Nat Immunol ; 20(3): 374, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30733606

RESUMO

In the version of this article initially published, the Supplementary Data file was an incorrect version. The correct version is now provided. The error has been corrected in the HTML and PDF version of the article.

8.
Elife ; 72018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30387712

RESUMO

A subset of atypical memory B cells accumulates in malaria and several infections, autoimmune disorders and aging in both humans and mice. It has been suggested these cells are exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear upon natural resolution of chronic infection. These cells show features of activation, proliferation, DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells, and part of a physiologic ongoing B-cell response.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Memória Imunológica , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium chabaudi/imunologia , Animais , Subpopulações de Linfócitos B/química , Linfócitos B/química , Citometria de Fluxo , Técnicas de Introdução de Genes , Imunoglobulina G/genética , Malária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças dos Roedores/imunologia
9.
Nat Immunol ; 19(5): 497-507, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662170

RESUMO

The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4+ T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4+ T cells in disease models involving the TH1 subset of helper T cells (malaria), TH2 cells (allergy) and TH17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in TH1 and TH2 responses, TH17 cell-mediated pathology was reduced in this context, with an accompanying decrease in TH17 cells and increase in Foxp3+ regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/imunologia , Interleucina-2/biossíntese , Proteínas Proto-Oncogênicas c-maf/imunologia , Animais , Interleucina-2/imunologia , Camundongos
10.
EBioMedicine ; 24: 216-230, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28888925

RESUMO

CD4+ follicular helper T (Tfh) cells have been shown to be critical for the activation of germinal center (GC) B-cell responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses. Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, resulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6 mice and consequent disruption of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P. chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection models, Signaling Lymphocyte Activation Molecule (SLAM)-Associated Protein (SAP)-deficient mice were able to activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell responses to this complex parasite compared with those of protein immunizations and viral infections. Therefore, these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses.


Assuntos
Células Dendríticas Foliculares/imunologia , Malária/imunologia , Plasmodium chabaudi/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Deleção de Genes , Imunoglobulina G/metabolismo , Ativação Linfocitária , Malária/genética , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores
11.
Sci Rep ; 7: 41722, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28155887

RESUMO

The influence of parasite genetic factors on immune responses and development of severe pathology of malaria is largely unknown. In this study, we performed genome-wide transcriptomic profiling of mouse whole blood during blood-stage infections of two strains of the rodent malaria parasite Plasmodium chabaudi that differ in virulence. We identified several transcriptomic signatures associated with the virulent infection, including signatures for platelet aggregation, stronger and prolonged anemia and lung inflammation. The first two signatures were detected prior to pathology. The anemia signature indicated deregulation of host erythropoiesis, and the lung inflammation signature was linked to increased neutrophil infiltration, more cell death and greater parasite sequestration in the lungs. This comparative whole-blood transcriptomics profiling of virulent and avirulent malaria shows the validity of this approach to inform severity of the infection and provide insight into pathogenic mechanisms.


Assuntos
Interações Hospedeiro-Parasita/genética , Malária/genética , Malária/parasitologia , Plasmodium/fisiologia , Transcriptoma , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Estágios do Ciclo de Vida , Malária/sangue , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Especificidade de Órgãos/genética , Plasmodium chabaudi/fisiologia , Agregação Plaquetária , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA