Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 182: 109175, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321584

RESUMO

Bladder cancer (BC) diagnosis presents a critical challenge in biomedical research, necessitating accurate tumor classification from diverse datasets for effective treatment planning. This paper introduces a novel wrapper feature selection (FS) method that leverages a hybrid optimization algorithm combining Orthogonal Learning (OL) with a rime optimization algorithm (RIME), termed mRIME. The mRIME algorithm is designed to avoid local optima, streamline the search process, and select the most relevant features without compromising classifier performance. It also introduces mRIME-SVM, a novel hybrid model integrating modified mRIME for FS with Support Vector Machine (SVM) for classification. The mRIME algorithm is employed as an FS method and is also utilized to fine-tune the hyperparameters of it the It SVM, enhancing the overall classification accuracy. Specifically, mRIME navigates complex search spaces to optimize FS without compromising classifier performance. Evaluated on eight diverse BC datasets, mRIME-SVM outperforms popular metaheuristic algorithms, ensuring precise and reliable diagnostic outcomes. Moreover, the proposed mRIME was employed for tackling global optimization problems. It has been thoroughly assessed using the IEEE Congress on Evolutionary Computation 2022 (CEC'2022) test suite. Comparative analyzes with Gray wolf optimization (GWO), Whale optimization algorithm (WOA), Harris hawks optimization (HHO), Golden Jackal Optimization (GJO), Hunger Game optimization algorithm (HGS), Sinh Cosh Optimizer (SCHO), and the original RIME highlight mRIME's competitiveness and efficacy across diverse optimization tasks. Leveraging mRIME's success, mRIME-SVM achieves high classification accuracy on nine BC datasets, surpassing existing models. Results underscore mRIME's competitiveness and applicability across diverse optimization tasks, extending its utility to enhance BC classification. This study contributes to advancing BC diagnostics with a robust computational framework, promising broader applications in bioinformatics and AI-driven medical research.

2.
Comput Biol Med ; 180: 108984, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128177

RESUMO

The identification of tumors through gene analysis in microarray data is a pivotal area of research in artificial intelligence and bioinformatics. This task is challenging due to the large number of genes relative to the limited number of observations, making feature selection a critical step. This paper introduces a novel wrapper feature selection method that leverages a hybrid optimization algorithm combining a genetic operator with a Sinh Cosh Optimizer (SCHO), termed SCHO-GO. The SCHO-GO algorithm is designed to avoid local optima, streamline the search process, and select the most relevant features without compromising classifier performance. Traditional methods often falter with extensive search spaces, necessitating hybrid approaches. Our method aims to reduce the dimensionality and improve the classification accuracy, which is essential in pattern recognition and data analysis. The SCHO-GO algorithm, integrated with a support vector machine (SVM) classifier, significantly enhances cancer classification accuracy. We evaluated the performance of SCHO-GO using the CEC'2022 benchmark function and compared it with seven well-known metaheuristic algorithms. Statistical analyses indicate that SCHO-GO consistently outperforms these algorithms. Experimental tests on eight microarray gene expression datasets, particularly the Gene Expression Cancer RNA-Seq dataset, demonstrate an impressive accuracy of 99.01% with the SCHO-GO-SVM model, highlighting its robustness and precision in handling complex datasets. Furthermore, the SCHO-GO algorithm excels in feature selection and solving mathematical benchmark problems, presenting a promising approach for tumor identification and classification in microarray data analysis.


Assuntos
Neoplasias , Máquina de Vetores de Suporte , Humanos , Neoplasias/genética , Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos
3.
Neural Comput Appl ; 35(7): 5251-5275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36340595

RESUMO

Feature selection (FS) is one of the basic data preprocessing steps in data mining and machine learning. It is used to reduce feature size and increase model generalization. In addition to minimizing feature dimensionality, it also enhances classification accuracy and reduces model complexity, which are essential in several applications. Traditional methods for feature selection often fail in the optimal global solution due to the large search space. Many hybrid techniques have been proposed depending on merging several search strategies which have been used individually as a solution to the FS problem. This study proposes a modified hunger games search algorithm (mHGS), for solving optimization and FS problems. The main advantages of the proposed mHGS are to resolve the following drawbacks that have been raised in the original HGS; (1) avoiding the local search, (2) solving the problem of premature convergence, and (3) balancing between the exploitation and exploration phases. The mHGS has been evaluated by using the IEEE Congress on Evolutionary Computation 2020 (CEC'20) for optimization test and ten medical and chemical datasets. The data have dimensions up to 20000 features or more. The results of the proposed algorithm have been compared to a variety of well-known optimization methods, including improved multi-operator differential evolution algorithm (IMODE), gravitational search algorithm, grey wolf optimization, Harris Hawks optimization, whale optimization algorithm, slime mould algorithm and hunger search games search. The experimental results suggest that the proposed mHGS can generate effective search results without increasing the computational cost and improving the convergence speed. It has also improved the SVM classification performance.

4.
Comput Intell Neurosci ; 2022: 2247675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655510

RESUMO

Smart monitoring and assisted living systems for cognitive health assessment play a central role in assessment of individuals' health conditions. Autistic children suffer from some difficulties including social skills, repetitive behaviors, speech and nonverbal communication, and accommodating to the environment around them. Thus, dealing with autistic children is a serious public health problem as it is hard to determine what they feel with a lack of emotional cognitive ability. Currently, no medical treatments have been shown to cure autistic children, with most of the social assistive research to date focusing on Autism Spectrum Disorder (ASD) without suggesting a real treatment. In this paper, we focus on improving cognitive ability and daily living skills and maximizing the ability of the autistic child to function and participate positively in the community. Through utilizing intelligent systems based Artificial Intelligence (AI) and Internet of Things (IoT) technologies, we facilitate the process of adaptation to the world around the autistic children. To this end, we propose an AI-enabled IoT system embodied in a sensor for measuring the heart rate to predict the state of the child and then sending the state to the guardian with feeling and expected behavior of the child via a mobile application. Further, the system can provide a new virtual environment to help the child to be capable of improving eye contact with other people. This way is represented in pictures of these persons in 3D models that break this child's fear barrier. The system follows strategies that have focused on social communication skill development particularly at young ages to be more interactive with others.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Internet das Coisas , Inteligência Artificial , Transtorno do Espectro Autista/terapia , Transtorno Autístico/psicologia , Criança , Cognição , Humanos
5.
Sci Rep ; 10(1): 14439, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879410

RESUMO

One of the major drawbacks of cheminformatics is a large amount of information present in the datasets. In the majority of cases, this information contains redundant instances that affect the analysis of similarity measurements with respect to drug design and discovery. Therefore, using classical methods such as the protein bank database and quantum mechanical calculations are insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid metaheuristic algorithm called CHHO-CS, which combines Harris hawks optimizer (HHO) with two operators: cuckoo search (CS) and chaotic maps. The role of CS is to control the main position vectors of the HHO algorithm to maintain the balance between exploitation and exploration phases, while the chaotic maps are used to update the control energy parameters to avoid falling into local optimum and premature convergence. Feature selection (FS) is a tool that permits to reduce the dimensionality of the dataset by removing redundant and non desired information, then FS is very helpful in cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. The support vector machines (SVMs) are then used by the proposed CHHO-CS as an objective function for the classification process in FS. The CHHO-CS-SVM is tested in the selection of appropriate chemical descriptors and compound activities. Various datasets are used to validate the efficiency of the proposed CHHO-CS-SVM approach including ten from the UCI machine learning repository. Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical compounds activities. The extensive experimental and statistical analyses exhibit that the suggested CHHO-CS method accomplished much-preferred trade-off solutions over the competitor algorithms including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, Salp swarm algorithm, and sine-cosine algorithm surfaced in the literature. The experimental results proved that the complexity associated with cheminformatics can be handled using chaotic maps and hybridizing the meta-heuristic methods.


Assuntos
Quimioinformática/tendências , Desenho de Fármacos , Aprendizado de Máquina , Algoritmos , Heurística , Humanos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA