Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Biomedicines ; 12(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38255304

RESUMO

Deep vein thrombosis (DVT) is a life-threatening condition that can lead to its sequelae pulmonary embolism (PE) or post-thrombotic syndrome (PTS). Murine models of DVT are frequently used in early-stage disease research and to assess potential therapies. This creates the need for the reliable and easy quantification of blood clots. In this paper, we present a novel high-frequency 3D ultrasound approach for the quantitative evaluation of the volume of DVT in an in vitro model and an in vivo murine model. The proposed method involves the use of a high-resolution ultrasound acquisition system and semiautomatic segmentation of the clot. The measured 3D volume of blood clots was validated to be correlated with in vitro blood clot weights with an R2 of 0.89. Additionally, the method was confirmed with an R2 of 0.91 in the in vivo mouse model with a cylindrical volume from macroscopic measurement. We anticipate that the proposed method will be useful in pharmacological or therapeutic studies in murine models of DVT.

2.
Invest Radiol ; 58(12): 865-873, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433074

RESUMO

OBJECTIVES: The objective of this study is to validate the modulated acoustic radiation force (mARF)-based imaging method in the detection of abdominal aortic aneurysm (AAA) in murine models using vascular endothelial growth factor receptor 2 (VEGFR-2)-targeted microbubbles (MBs). MATERIALS AND METHODS: The mouse AAA model was prepared using the subcutaneous angiotensin II (Ang II) infusion combined with the ß-aminopropionitrile monofumarate solution dissolved in drinking water. The ultrasound imaging session was performed at 7 days, 14 days, 21 days, and 28 days after the osmotic pump implantation. For each imaging session, 10 C57BL/6 mice were implanted with Ang II-filled osmotic pumps, and 5 C57BL/6 mice received saline infusion only as the control group. Biotinylated lipid MBs conjugated to either anti-mouse VEGFR-2 antibody (targeted MBs) or isotype control antibody (control MBs) were prepared before each imaging session and were injected into mice via tail vein catheter. Two separate transducers were colocalized to image the AAA and apply ARF to translate MBs simultaneously. After each imaging session, tissue was harvested and the aortas were used for VEGFR-2 immunostaining analysis. From the collected ultrasound image data, the signal magnitude response of the adherent targeted MBs was analyzed, and a parameter, residual-to-saturation ratio ( Rres - sat ), was defined to measure the enhancement in the adherent targeted MBs signal after the cessation of ARF compared with the initial signal intensity. Statistical analysis was performed with the Welch t test and analysis of variance test. RESULTS: The Rres - sat of abdominal aortic segments from Ang II-challenged mice was significantly higher compared with that in the saline-infused control group ( P < 0.001) at all 4 time points after osmotic pump implantation (1 week to 4 weeks). In control mice, the Rres - sat values were 2.13%, 1.85%, 3.26%, and 4.85% at 1, 2, 3, and 4 weeks postimplantation, respectively. In stark contrast, the Rres - sat values for the mice with Ang II-induced AAA lesions were 9.20%, 20.6%, 22.7%, and 31.8%, respectively. It is worth noting that there was a significant difference between the Rres - sat for Ang II-infused mice at all 4 time points ( P < 0.005), a finding not present in the saline-infused mice. Immunostaining results revealed the VEGFR-2 expression was increased in the abdominal aortic segments of Ang II-infused mice compared with the control group. CONCLUSIONS: The mARF-based imaging technique was validated in vivo using a murine model of AAA and VEGFR-2-targeted MBs. Results in this study indicated that the mARF-based imaging technique has the ability to detect and assess AAA growth at early stages based on the signal intensity of adherent targeted MBs, which is correlated with the expression level of the desired molecular biomarker. The results may suggest, in very long term, a pathway toward eventual clinical implementation for an ultrasound molecular imaging-based approach to AAA risk assessment in asymptomatic patients.


Assuntos
Aneurisma da Aorta Abdominal , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Acústica , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microbolhas , Fator A de Crescimento do Endotélio Vascular
3.
Bioact Mater ; 26: 52-63, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36875050

RESUMO

Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.

4.
Ultrasound Med Biol ; 48(6): 1058-1069, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35287996

RESUMO

Mouse models are critical in developing new therapeutic approaches to treat peripheral arterial disease (PAD). Despite decades of research and numerous clinical trials, the efficacy of available therapies is limited. This may suggest shortcomings in our current animal models and/or methods of assessment. We evaluated perfusion measurement methods in a mouse model of PAD by comparing laser Doppler perfusion imaging (LDPI, the most common technique), contrast-enhanced ultrasound (CEUS, an emerging technique) and fluorescent microspheres (conventional standard). Mice undergoing a femoral artery ligation were assessed by LDPI and CEUS at baseline and 1, 4, 7, 14, 28, 60, 90 and 150 d post-surgery to evaluate perfusion recovery in the ischemic hindlimb. Fourteen days after surgery, additional mice were measured with fluorescent microspheres, LDPI, and CEUS. LDPI and CEUS resulted in broadly similar trends of perfusion recovery until 7 d post-surgery. However, by day 14, LDPI indicated full recovery of perfusion, whereas CEUS indicated ∼50% recovery, which failed to improve even after 5 mo. In agreement with the CEUS results, fluorescent microspheres at day 14 post-surgery confirmed that perfusion recovery was incomplete. Histopathology and photoacoustic microscopy provided further evidence of sustained vascular abnormalities.


Assuntos
Arteriopatias Oclusivas , Doença Arterial Periférica , Animais , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea , Membro Posterior/diagnóstico por imagem , Isquemia/diagnóstico por imagem , Isquemia/patologia , Lasers , Camundongos , Perfusão , Imagem de Perfusão/métodos , Doença Arterial Periférica/diagnóstico por imagem
5.
IEEE Trans Med Imaging ; 41(1): 103-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388091

RESUMO

Photoacoustic microscopy (PAM) leverages the optical absorption contrast of blood hemoglobin for high-resolution, multi-parametric imaging of the microvasculature in vivo. However, to quantify the blood flow speed, dense spatial sampling is required to assess blood flow-induced loss of correlation of sequentially acquired A-line signals, resulting in increased laser pulse repetition rate and consequently optical fluence. To address this issue, we have developed a sparse modeling approach for blood flow quantification based on downsampled PAM data. Evaluation of its performance both in vitro and in vivo shows that this sparse modeling method can accurately recover the substantially downsampled data (up to 8 times) for correlation-based blood flow analysis, with a relative error of 12.7 ± 6.1 % across 10 datasets in vitro and 12.7 ± 12.1 % in vivo for data downsampled 8 times. Reconstruction with the proposed method is on par with recovery using compressive sensing, which exhibits an error of 12.0 ± 7.9 % in vitro and 33.86 ± 26.18 % in vivo for data downsampled 8 times. Both methods outperform bicubic interpolation, which shows an error of 15.95 ± 9.85 % in vitro and 110.7 ± 87.1 % in vivo for data downsampled 8 times.


Assuntos
Microscopia , Técnicas Fotoacústicas , Lasers , Microvasos , Análise Espectral
6.
Ultrasound Med Biol ; 47(11): 3240-3252, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34376299

RESUMO

Ultrasound molecular imaging techniques rely on the separation and identification of three types of signals: static tissue, adherent microbubbles and non-adherent microbubbles. In this study, the image filtering techniques of singular value thresholding (SVT) and normalized singular spectrum area (NSSA) were combined to isolate and identify vascular endothelial growth factor receptor 2-targeted microbubbles in a mouse hindlimb tumor model (n = 24). By use of a Verasonics Vantage 256 imaging system with an L12-5 transducer, a custom-programmed pulse inversion sequence employing synthetic aperture virtual source element imaging was used to collect contrast images of mouse tumors perfused with microbubbles. SVT was used to suppress static tissue signals by 9.6 dB while retaining adherent and non-adherent microbubble signals. NSSA was used to classify microbubble signals as adherent or non-adherent with high accuracy (receiver operating characteristic area under the curve [ROC AUC] = 0.97), matching the classification performance of differential targeted enhancement. The combined SVT + NSSA filtering method also outperformed differential targeted enhancement in differentiating MB signals from all other signals (ROC AUC = 0.89) without necessitating destruction of the contrast agent. The results from this study indicate that SVT and NSSA can be used to automatically segment and classify contrast signals. This filtering method with potential real-time capability could be used in future diagnostic settings to improve workflow and speed the clinical uptake of ultrasound molecular imaging techniques.


Assuntos
Microbolhas , Fator A de Crescimento do Endotélio Vascular , Animais , Meios de Contraste , Camundongos , Imagem Molecular , Ultrassonografia
7.
Sci Rep ; 11(1): 11797, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083642

RESUMO

Microbubbles (MB) are widely used as contrast agents to perform contrast-enhanced ultrasound (CEUS) imaging and as acoustic amplifiers of mechanical bioeffects incited by therapeutic-level ultrasound. The distribution of MBs in the brain is not yet fully understood, thereby limiting intra-operative CEUS guidance or MB-based FUS treatments. In this paper we describe a robust platform for quantification of MB distribution in the human brain, allowing to quantitatively discriminate between tumoral and normal brain tissues and we provide new information regarding real-time cerebral MBs distribution. Intraoperative CEUS imaging was performed during surgical tumor resection using an ultrasound machine (MyLab Twice, Esaote, Italy) equipped with a multifrequency (3-11 MHz) linear array probe (LA332) and a specific low mechanical index (MI < 0.4) CEUS algorithm (CnTi, Esaote, Italy; section thickness, 0.245 cm) for non-destructive continuous MBs imaging. CEUS acquisition is started by enabling the CnTI PEN-M algorithm automatically setting the MI at 0.4 with a center frequency of 2.94 MHz-10 Hz frame rate at 80 mm-allowing for continuous non-destructive MBs imaging. 19 ultrasound image sets of adequate length were selected and retrospectively analyzed using a custom image processing software for quantitative analysis of echo power. Regions of interest (ROIs) were drawn on key structures (artery-tumor-white matter) by a blinded neurosurgeon, following which peak enhancement and time intensity curves (TICs) were quantified. CEUS images revealed clear qualitative differences in MB distribution: arteries showed the earliest and highest enhancement among all structures, followed by tumor and white matter regions, respectively. The custom software built for quantitative analysis effectively captured these differences. Quantified peak intensities showed regions containing artery, tumor or white matter structures having an average MB intensity of 0.584, 0.436 and 0.175 units, respectively. Moreover, the normalized area under TICs revealed the time of flight for MB to be significantly lower in brain tissue as compared with tumor tissue. Significant heterogeneities in TICs were also observed within different regions of the same brain lesion. In this study, we provide the most comprehensive strategy for accurate quantitative analysis of MBs distribution in the human brain by means of CEUS intraoperative imaging. Furthermore our results demonstrate that CEUS imaging quantitative analysis enables discernment between different types of brain tumors as well as regions and structures within the brain. Similar considerations will be important for the planning and implementation of MB-based imaging or treatments in the future.


Assuntos
Encéfalo/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem , Microbolhas , Ultrassonografia/métodos , Adulto , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Análise de Dados , Feminino , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Heart Lung Circ ; 30(9): 1389-1396, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33863665

RESUMO

BACKGROUND: Pulmonary artery proportional pulse pressure (PAPP) was recently shown to have prognostic value in heart failure (HF) with reduced ejection fraction (HFrEF) and pulmonary hypertension. We tested the hypothesis that PAPP would be predictive of adverse outcomes in patients with implantable pulmonary artery pressure monitor (CardioMEMS™ HF System, St. Jude Medical [now Abbott], Atlanta, GA, USA). METHODS: Survival analysis with Cox proportional hazards regression was used to evaluate all-cause deaths and HF hospitalisation (HFH) in CHAMPION trial1 patients who received treatment with the CardioMEMS device based on the PAPP. RESULTS: Among 550 randomised patients, 274 had PAPP ≤ the median value of 0.583 while 276 had PAPP>0.583. Patients with PAPP≤0.583 (versus PAPP>0.583) had an increased risk of HFH (HR 1.40, 95% CI 1.16-1.68, p=0.0004) and experienced a significant 46% reduction in annualised risk of death with CardioMEMS treatment (HR 0.54, 95% CI 0.31-0.92) during 2-3 years of follow-up. This survival benefit was attributable to the treatment benefit in patients with HFrEF and PAPP≤0.583 (HR 0.50, 95% CI 0.28-0.90, p<0.05). Patients with PAPP>0.583 or HF with preserved EF (HFpEF) had no significant survival benefit with treatment (p>0.05). CONCLUSION: Lower PAPP in HFrEF patients with CardioMEMS constitutes a higher mortality risk status. More studies are needed to understand clinical applications of PAPP in implantable pulmonary artery pressure monitors.


Assuntos
Insuficiência Cardíaca , Pressão Sanguínea , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Piperazinas , Prognóstico , Artéria Pulmonar , Volume Sistólico
9.
Invest Radiol ; 56(4): 197-206, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976207

RESUMO

OBJECTIVES: Ultrasound contrast agents, consisting of gas-filled microbubbles (MBs), have been imaged using several techniques that include ultrasound localization microscopy and targeted molecular imaging. Each of these techniques aims to provide indicators of the disease state but has traditionally been performed independently without co-localization of molecular markers and super-resolved vessels. In this article, we present a new imaging technology: a targeted molecular localization (TML) approach, which uses a single imaging sequence and reconstruction approach to co-localize super-resolved vasculature with molecular imaging signature to provide simultaneous anatomic and biological information for potential multiscale disease evaluation. MATERIALS AND METHODS: The feasibility of the proposed TML technique was validated in a murine hindlimb tumor model. Targeted molecular localization imaging was performed on 3 groups, which included control tissue (leg), tumor tissue, and tumor tissue after sunitinib an-tivascular treatment. Quantitative measures for vascular index (VI) and molecular index (MITML) were calculated from the microvasculature and TML images, respectively. In addition to these conventional metrics, a new metric unique to the TML technique, reporting the ratio of targeted molecular index to vessel surface, was assessed. RESULTS: The quantitative resolution results of the TML approach showed resolved resolution of the microvasculature down to 28.8 µm. Vascular index increased in tumors with and without sunitinib compared with the control leg, but the trend was not statistically significant. A decrease in MITML was observed for the tumor after treatment (P < 0.0005) and for the control leg (P < 0.005) compared with the tumor before treatment. Statistical differences in the ratio of molecular index to vessel surface were found between all groups: the control leg and tumor (P < 0.05), the control leg and tumor after sunitinib treatment (P < 0.05), and between tumors with and without sunitinib treatment (P < 0.001). CONCLUSIONS: These findings validated the technical feasibility of the TML method and pre-clinical feasibility for differentiating between the normal and diseased tissue states.


Assuntos
Microbolhas , Neoplasias , Animais , Meios de Contraste , Camundongos , Microvasos/diagnóstico por imagem , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Ultrassonografia
10.
Artigo em Inglês | MEDLINE | ID: mdl-32746233

RESUMO

Echocardiographic image sequences are frequently corrupted by quasi-static artifacts ("clutter") superimposed on the moving myocardium. Conventionally, localized blind source separation methods exploiting local correlation in the clutter have proven effective in the suppression of these artifacts. These methods use the spectral characteristics to distinguish the clutter from tissue and background noise and are applied exhaustively over the data set. The exhaustive application results in high computational complexity and a loss of useful tissue signal. In this article, we develop a closed-loop algorithm in which the clutter is first detected using an adaptively determined weighting function and then removed using low-rank estimation methods. We show that our method is adaptable to different low-rank estimators, by presenting two such estimators: sparse coding in the principal component domain and nuclear norm minimization. We compare the performance of our proposed method (CLEAR) with two methods: singular value filtering (SVF) and morphological component analysis (MCA). The performance was quantified in silico by measuring the error with respect to a known "ground truth" data set with no clutter for different combinations of moving clutter and tissue. Our method retains more tissue with a lower error of 3.88 ± 0.093 dB (sparse coding) and 3.47 ± 0.78 (nuclear norm) compared with the benchmark methods 8.5 ± 0.7 dB (SVF) and 9.3 ± 0.5 dB (MCA) particularly in instances where the rate of tissue motion and artifact motion is small (≤0.25 periods of center frequency per frame) while producing comparable clutter reduction performance. CLEAR was also validated in vivo by quantifying the tracking error over the cardiac cycle on five mouse heart data sets with synthetic clutter. CLEAR reduced the error by approximately 50%, compared with 25% for the SVF.


Assuntos
Artefatos , Ecocardiografia , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Camundongos
11.
Invest Radiol ; 55(9): 559-572, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32776766

RESUMO

Ultrasound is the most widely used medical imaging modality worldwide. It is abundant, extremely safe, portable, and inexpensive. In this review, we consider some of the current development trends for ultrasound imaging, which build upon its current strength and the popularity it experiences among medical imaging professional users.Ultrasound has rapidly expanded beyond traditional radiology departments and cardiology practices. Computing power and data processing capabilities of commonly available electronics put ultrasound systems in a lab coat pocket or on a user's mobile phone. Taking advantage of new contributions and discoveries in ultrasound physics, signal processing algorithms, and electronics, the performance of ultrasound systems and transducers have progressed in terms of them becoming smaller, with higher imaging performance, and having lower cost. Ultrasound operates in real time, now at ultrafast speeds; kilohertz frame rates are already achieved by many systems.Ultrasound has progressed beyond anatomical imaging and monitoring blood flow in large vessels. With clinical approval of ultrasound contrast agents (gas-filled microbubbles) that are administered in the bloodstream, tissue perfusion studies are now routine. Through the use of modern ultrasound pulse sequences, individual microbubbles, with subpicogram mass, can be detected and observed in real time, many centimeters deep in the body. Ultrasound imaging has broken the wavelength barrier; by tracking positions of microbubbles within the vasculature, superresolution imaging has been made possible. Ultrasound can now trace the smallest vessels and capillaries, and obtain blood velocity data in those vessels.Molecular ultrasound imaging has now moved closer to clinic; the use of microbubbles with a specific affinity to endothelial biomarkers allows selective accumulation and retention of ultrasound contrast in the areas of ischemic injury, inflammation, or neoangiogenesis. This will aid in noninvasive molecular imaging and may provide additional help with real-time guidance of biopsy, surgery, and ablation procedures.The ultrasound field can be tightly focused inside the body, many centimeters deep, with millimeter precision, and ablate lesions by energy deposition, with thermal or mechanical bioeffects. Some of such treatments are already in clinical use, with more indications progressing through the clinical trial stage. In conjunction with intravascular microbubbles, focused ultrasound can be used for tissue-specific drug delivery; localized triggered release of sequestered drugs from particles in the bloodstream may take time to get to clinic. A combination of intravascular microbubbles with circulating drug and low-power ultrasound allows transient opening of vascular endothelial barriers, including blood-brain barrier; this approach has reached clinical trial stage. Therefore, the drugs that normally would not be getting to the target tissue in the brain will now have an opportunity to produce therapeutic efficacy.Overall, medical ultrasound is developing at a brisk rate, even in an environment where other imaging modalities are also advancing rapidly and may be considered more lucrative. With all the current advances that we discuss, and many more to come, ultrasound may help solve many problems that modern medicine is facing.


Assuntos
Custos e Análise de Custo , Segurança , Terapia por Ultrassom/métodos , Ultrassonografia/métodos , Biomarcadores/metabolismo , Humanos , Terapia por Ultrassom/efeitos adversos , Terapia por Ultrassom/economia , Ultrassonografia/efeitos adversos , Ultrassonografia/economia
12.
Biomicrofluidics ; 14(3): 034101, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32454925

RESUMO

Real-time observation and control of particle size and production rate in microfluidic devices are important capabilities for a number of applications, including the production, sorting, and manipulation of microbubbles and droplets. The production of microbubbles from flow-focusing microfluidic devices had been investigated in multiple studies, but each lacked an approach for on-chip measurement and control of microbubble diameter in real time. In this work, we implement a closed-loop feedback control system in a flow-focusing microfluidic device with integrated on-chip electrodes. Using our system, we measure and count microbubbles between 13 and 28 µ m in diameter and control their diameter using a proportional-integral controller. We validate our measurements against an optical benchmark with R 2 = 0.98 and achieve a maximum production rate of 1.4 × 10 5 /s. Using the feedback control system, the device enabled control in microbubble diameter over the range of 14-24 µ m.

13.
Ultrasound Med Biol ; 45(9): 2493-2501, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227262

RESUMO

Ultrasound molecular imaging is a diagnostic technique wherein molecularly targeted microbubble contrast agents are imaged to reveal disease markers on the blood vessel endothelium. Currently, microbubble adhesion to affected tissue can be quantified using differential targeted enhancement (dTE), which measures the late enhancement of adherent microbubbles through administration of destructive ultrasound pressures. In this study, we investigated a statistical parameter called the normalized singular spectrum area (NSSA) as a means to detect microbubble adhesion without microbubble destruction. We compared the signal differentiation capability of NSSA with matched dTE measurements in a mouse hindlimb tumor model. Results indicated that NSSA-based signal classification performance matches dTE when differentiating adherent microbubble from non-adherent microbubble signals (receiver operating characteristic area under the curve = 0.95), and improves classification performance when differentiating microbubble from tissue signals (p < 0.005). NSSA-based signal classification eliminates the need for destruction of contrast, and may offer better sensitivity, specificity and the opportunity for real-time microbubble detection and classification.


Assuntos
Meios de Contraste/química , Microbolhas , Imagem Molecular/métodos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Sensibilidade e Especificidade
14.
Lab Chip ; 19(10): 1887, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31026008

RESUMO

Correction for 'A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles' by J. M. Robert Rickel et al., Lab Chip, 2018, 18, 2653-2664.

15.
Ann Biomed Eng ; 47(4): 1012-1022, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30689066

RESUMO

Limitations of existing thrombolytic therapies for acute ischemic stroke have motivated the development of catheter-based approaches that utilize no or low doses of thrombolytic drugs combined with a mechanical action to either dissolve or extract the thrombus. Sonothrombolysis accelerates thrombus dissolution via the application of ultrasound combined with microbubble contrast agents and low doses of thrombolytics to mechanically disrupt the fibrin mesh. In this work, we studied the efficacy of catheter-directed sonothrombolysis in a rat model of ischemic stroke. Microbubbles of 10-20 µm diameter with a nitrogen gas core and a non-crosslinked albumin shell were produced by a flow-focusing microfluidic device in real time. The microbubbles were dispensed from a catheter located in the internal carotid artery for direct delivery to the thrombus-occluded middle cerebral artery, while ultrasound was administered through the skull and recombinant tissue plasminogen activator (rtPA) was infused via a tail vein catheter. The results of this study demonstrate that flow focusing microfluidic devices can be miniaturized to dimensions compatible with human catheterization and that large-diameter microbubbles comprised of high solubility gases can be safely administered intraarterially to deliver a sonothrombolytic therapy. Further, sonothrombolysis using intraarterial delivery of large microbubbles reduced cerebral infarct volumes by approximately 50% vs. no therapy, significantly improved functional neurological outcomes at 24 h, and permitted rtPA dose reduction of 3.3 (95% CI 1.8-3.8) fold when compared to therapy with intravenous rtPA alone.


Assuntos
Isquemia Encefálica/terapia , Microbolhas , Acidente Vascular Cerebral/terapia , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/farmacologia , Terapia por Ultrassom , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Microfluídica , Ratos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
16.
Lab Chip ; 18(17): 2653-2664, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30070301

RESUMO

Flow focusing microfluidic devices (FFMDs) have been investigated for the production of monodisperse populations of microbubbles for chemical, biomedical and mechanical engineering applications. High-speed optical microscopy is commonly used to monitor FFMD microbubble production parameters, such as diameter and production rate, but this limits the scalability and portability of the approach. In this work, a novel FFMD design featuring integrated electronics for measuring microbubble diameters and production rates is presented. A micro Coulter particle counter (µCPC), using electrodes integrated within the expanding nozzle of an FFMD (FFMD-µCPC), was designed, fabricated and tested. Finite element analysis (FEA) of optimal electrode geometry was performed and validated with experimental data. Electrical data was collected for 8-20 µm diameter microbubbles at production rates up to 3.25 × 105 MB s-1 and compared to both high-speed microscopy data and FEA simulations. Within a valid operating regime, Coulter counts of microbubble production rates matched optical reference values. The Coulter method agreed with the optical reference method in evaluating the microbubble diameter to a coefficient of determination of R2 = 0.91.


Assuntos
Dispositivos Lab-On-A-Chip , Microbolhas , Análise de Elementos Finitos
17.
Sci Rep ; 8(1): 985, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343801

RESUMO

Photoacoustic microscopy (PAM) capitalizes on the optical absorption of blood hemoglobin to enable label-free high-contrast imaging of the cerebral microvasculature in vivo. Although time-resolved ultrasonic detection equips PAM with depth-sectioning capability, most of the data at depths are often obscured by acoustic reverberant artifacts from superficial cortical layers and thus unusable. In this paper, we present a first-of-a-kind dictionary learning algorithm to remove the reverberant signal while preserving underlying microvascular anatomy. This algorithm was validated in vitro, using dyed beads embedded in an optically transparent polydimethylsiloxane phantom. Subsequently, we demonstrated in the live mouse brain that the algorithm can suppress reverberant artifacts by 21.0 ± 5.4 dB, enabling depth-resolved PAM up to 500 µm from the brain surface.


Assuntos
Algoritmos , Córtex Cerebral/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Microscopia/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnicas Fotoacústicas/métodos , Animais , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Diagnóstico por Imagem/instrumentação , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Masculino , Camundongos , Microcirculação/fisiologia , Microscopia/instrumentação , Reconhecimento Automatizado de Padrão/estatística & dados numéricos , Técnicas Fotoacústicas/instrumentação , Razão Sinal-Ruído , Crânio/cirurgia , Trepanação/métodos
18.
J Drug Target ; 26(5-6): 420-434, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29258335

RESUMO

For contrast ultrasound imaging, the most efficient contrast agents comprise highly compressible gas-filled microbubbles. These micrometer-sized particles are typically filled with low-solubility perfluorocarbon gases, and coated with a thin shell, often a lipid monolayer. These particles circulate in the bloodstream for several minutes; they demonstrate good safety and are already in widespread clinical use as blood pool agents with very low dosage necessary (sub-mg per injection). As ultrasound is an ubiquitous medical imaging modality, with tens of millions of exams conducted annually, its use for molecular/targeted imaging of biomarkers of disease may enable wider implementation of personalised medicine applications, precision medicine, non-invasive quantification of biomarkers, targeted guidance of biopsy and therapy in real time. To achieve this capability, microbubbles are decorated with targeting ligands, possessing specific affinity towards vascular biomarkers of disease, such as tumour neovasculature or areas of inflammation, ischaemia-reperfusion injury or ischaemic memory. Once bound to the target, microbubbles can be selectively visualised to delineate disease location by ultrasound imaging. This review discusses the general design trends and approaches for such molecular ultrasound imaging agents, which are currently at the advanced stages of development, and are evolving towards widespread clinical trials.


Assuntos
Meios de Contraste/administração & dosagem , Microbolhas , Ultrassonografia/métodos , Animais , Humanos , Lipídeos/química , Imagem Molecular/métodos , Tamanho da Partícula
19.
Ann Biomed Eng ; 46(2): 222-232, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29192346

RESUMO

Therapeutic approaches that enhance thrombolysis by combining recombinant tissue plasminogen activator (rtPA), ultrasound, and/or microbubbles (MBs) are known as sonothrombolysis techniques. To date, sonothrombolysis approaches have primarily utilized commercially available MB formulations (or derivatives thereof) with diameters in the range 1-4 µm and circulation lifetimes between 5 and 15 min. The present study evaluated the in vitro sonothrombolysis efficacy of large diameter MBs (d MB ≥ 10 µm) with much shorter lifetimes that were produced on demand and in close proximity to the blood clot using a flow-focusing microfluidic device. MBs with a N2 gas core and a non-crosslinked bovine serum albumin shell were produced with diameters between 10 and 20 µm at rates between 50 and 950 × 103 per second. Use of these large MBs resulted in approximately 4.0-8.8 fold increases in thrombolysis rates compared to a clinical rtPA dose and approximately 2.1-4.2 fold increases in thrombolysis rates compared to sonothrombolysis techniques using conventional MBs. The results of this study indicate that the large diameter microbubbles with transient stability are capable of significantly enhanced in vitro sonothrombolysis rates when delivered directly to the clot immediately following production by a flow focusing microfluidic device placed essentially in situ adjacent to the clot.


Assuntos
Dispositivos Lab-On-A-Chip , Microbolhas , Nitrogênio/química , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/química , Animais , Bovinos , Humanos , Soroalbumina Bovina/química , Terapia Trombolítica/instrumentação , Terapia Trombolítica/métodos
20.
Nephron ; 137(4): 277-281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28595190

RESUMO

Inflammation is broadly recognized as an important factor in the pathogenesis of acute kidney injury (AKI), but pharmacological approaches to alleviate inflammation in AKI have been without success in clinical trials. Neuromodulation by nonpharmacological methods is emerging as a novel therapeutic strategy to treat inflammatory diseases. Recently, our group and others have demonstrated that vagus nerve stimulation and pulsed ultrasound ameliorated inflammation via the cholinergic anti-inflammatory pathway (CAP) in various animal models, including renal ischemia-reperfusion injury. Delineating the precise mechanisms by which these methods activate the CAP and ameliorate inflammation is mandatory for the broad clinical application in the future. Novel techniques, such as optogenetics, are expected to elucidate these complex mechanisms.


Assuntos
Injúria Renal Aguda/patologia , Injúria Renal Aguda/terapia , Fenômenos Biomecânicos , Inflamação/patologia , Inflamação/terapia , Injúria Renal Aguda/complicações , Animais , Humanos , Inflamação/etiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA