Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 16(10): e0258879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714861

RESUMO

Serum Paraoxonase 2 (PON2) level is a potential biomarker owing to its association with a number of pathophysiological conditions such as atherosclerosis and cardiovascular disease. Since cholinergic deficiency is closely linked with Alzheimer's disease (AD) progression, acetylcholinesterase inhibitors (AChEIs) are the treatment of choice for patients with AD. However, there is a heterogenous response to these drugs and mostly the subjects do not respond to the treatment. Gene polymorphism, the simultaneous occurrence of two or more discontinuous alleles in a population, could be one of the important factors for this. Hence, we hypothesized that PON2 and its polymorphic forms may be hydrolyzing the AChEIs differently, and thus, different patients respond differently. To investigate this, two AChEIs, donepezil hydrochloride (DHC) and pyridostigmine bromide (PB), were selected. Human PON2 wildtype gene and four mutants, two catalytic sites, and two polymorphic sites were cloned, recombinantly expressed, and purified for in vitro analysis. Enzyme activity and AChE activity were measured to quantitate the amount of DHC and PB hydrolyzed by the wildtype and the mutant proteins. Herein, PON2 esterase activity and AChE inhibitor efficiency were found to be inversely related. A significant difference in enzyme activity of the catalytic site mutants was observed as compared to the wildtype, and subsequent AChE activity showed that esterase activity of PON2 is responsible for the hydrolysis of DHC and PB. Interestingly, PON2 polymorphic site mutants showed increased esterase activity; therefore, this could be the reason for the ineffectiveness of the drugs. Thus, our data suggested that the esterase activity of PON2 was mainly responsible for the hydrolysis of AChEI, DHC, and PB, and that might be responsible for the variation in individual response to AChEI therapy.


Assuntos
Doença de Alzheimer , Arildialquilfosfatase , Inibidores da Colinesterase/metabolismo , Donepezila/metabolismo , Brometo de Piridostigmina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Humanos , Mutação , Ligação Proteica
2.
Res Vet Sci ; 131: 15-20, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278959

RESUMO

Ascorbic acid (AA) is known to be an important antioxidant serving as a cofactor in collagen synthesis, and thus facilitates follicular growth in the ovary. Many studies have shown that AA is synthesized in the liver and transported to other organs including ovary, however, there is no direct evidence of ascorbic acid synthesis in the ovary. Hence, we examined the expression pattern of different proteins (SMP30/GNL and GULO) involved in the AA synthesis in pre-pubertal rat, which showed significant expression of these proteins, suggesting the synthesis of AA in the ovary. Accumulation of AA in the ovary during follicular growth has been well demonstrated. However, the effect of Pregnant Mare Serum Gonadotropin (PMSG) on the AA synthesis in the ovary has not been studied in detail. Hence to decipher the effect, different doses of PMSG were injected subcutaneously into the pre-pubertal female rats, and ovarian AA level was measured after 48 h. A significant increase in AA content was observed in PMSG treated animal groups. Further, to understand the mechanism underlying ovarian AA accumulation, the expression levels of SMP30/GNL and GULO genes were measured. Expression of both the genes was significantly suppressed, which suggested a lowered AA synthesis in the PMSG treated rat ovary. For further understanding, mRNA expression of AA transporters SVCT1 and SVCT2 encoded by SLC23A1 and SLC23A2 genes respectively were measured, which showed increased level of SVCT1 expression. These observations suggested that the increased AA content might not be due to increased synthesis of AA within the ovary but possibly due to increased uptake from blood during the stimulation of follicular growth.


Assuntos
Ácido Ascórbico/biossíntese , Gonadotropinas Equinas/farmacologia , Ovário/efeitos dos fármacos , Maturidade Sexual/fisiologia , Animais , Antioxidantes/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos , Feminino , Fígado/metabolismo , Gravidez , Ratos
3.
PLoS One ; 14(6): e0218629, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220150

RESUMO

Senescence Marker Protein (SMP30) is a metalloenzyme that shows lactonase activity in the ascorbic acid (AA) biosynthesis pathway in non-primate mammals such as a mouse. However, AA biosynthesis does not occur in the primates including humans. Several studies have shown the role of SMP30 in maintaining calcium homeostasis in mammals. In addition, it is also reported to have promiscuous enzyme activity with an organophosphate (OP) substrate. Hence, this study aims to recombinantly express and purify the SMP30 proteins from both mouse and human, and to study their structural alterations and functional deviations in the presence of different divalent metals. For this, mouse SMP30 (MoSMP30) as well as human SMP30 (HuSMP30) were cloned in the bacterial expression vector. Proteins were overexpressed and purified from soluble fractions as well as from inclusion bodies as these proteins were expressed largely in insoluble fractions. The purified proteins were used to study the folding conformations in the presence of different divalent cations (Ca2+, Co2+, Mg2+, and Zn2+) with the help of circular dichroism (CD) spectroscopy. It was observed that both MoSMP30 and HuSMP30 acquired native folding conformations. To study the metal-binding affinity, dissociation constant (Kd values) were calculated from UV-VIS titration curve, which showed the highest affinity of MoSMP30 with Zn2+. However, HuSMP30 showed the highest affinity with Ca2+, suggesting the importance of HuSMP30 in maintaining calcium homeostasis. Enzyme kinetics were performed with γ-Thiobutyrolactone and Demeton-S in the presence of different divalent cations. Interestingly, both the proteins showed lactonase activity in the presence of Ca2+. In addition, MoSMP30 and HuSMP30 also showed lactonase activity in the presence of Co2+ and Zn2+ respectively. Moreover, both the proteins showed OP hydrolase activities in the presence of Ca2+ as well as Zn2+, suggesting the metal-dependent promiscuous nature of SMP30.


Assuntos
Proteínas de Ligação ao Cálcio/química , Cátions Bivalentes/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Simulação de Dinâmica Molecular , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Dissulfóton/química , Dissulfóton/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Homologia de Sequência de Aminoácidos
4.
Comput Biol Chem ; 77: 146-153, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30316191

RESUMO

l-Gulonate dehydrogenase (GuDH) is a crucial enzyme in the non-phosphorylated sugar metabolism or glucuronate-xylulose (GX) pathway. Some naturally occurring compounds inhibit GuDH. Ascorbic acid is one of such inhibitors for GuDH. However, the exact mechanism by which ascorbic acid inhibits GuDH is still unknown. In this study, we try to investigate GuDH inhibition using computational approaches by generating a model for buffalo GuDH. We used this model to perform blind dockings of ascorbic acid to GuDH. Some docked conformations of ascorbic acid bind near Asp39 and have steric clashes with crystal structure conformation of NADH. To assess the dynamic stability of the GuDH-ascorbic acid complex, we performed six molecular dynamics simulations for GuDH, three each in its free form and in complex with ascorbic acid for 50 ns, to obtain 300 ns of trajectories in total. During the simulations, ascorbic acid interacted with several residues nearby Asp39. As Asp39 is an important residue for NADH binding and specificity, the interaction of ascorbic acid near Asp39 hinders further NADH binding and ultimately affects the enzymatic functioning of GuDH. In this study, we analyze these interactions between ascorbic acid and GuDH. Our analysis reveals novel details on the mechanism of GuDH inhibition by ascorbic acid.


Assuntos
Ácido Ascórbico/farmacologia , Desidrogenases de Carboidrato/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Ácido Ascórbico/química , Desidrogenases de Carboidrato/metabolismo , Inibidores Enzimáticos/química , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA