Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502854

RESUMO

Less than 5% of intravenously-injected nanoparticles (NPs) reach destined sites in the body due to opsonization and immune-based clearance in vascular circulation. By hitchhiking in situ onto specific blood components post-injection, NPs can selectively target tissue sites for unprecedentedly high drug delivery rates. Choline carboxylate ionic liquids (ILs) are biocompatible liquid salts <100X composed of bulky asymmetric cations and anions. This class of ILs has been previously shown to significantly extend circulation time and redirect biodistribution in BALB/c mice post-IV injection via hitchhiking on red blood cell (RBC) membranes. Herein, we synthesized & screened 60 choline carboxylic acid-based ILs to coat PLGA NPs and present the impact of structurally engineering the coordinated anion identity to selectively interface and hitchhike lymphocytes, monocytes, granulocytes, platelets, and RBCs in whole mouse blood for in situ targeted drug delivery. Furthermore, we find this nanoparticle platform to be biocompatible (non-cytotoxic), translate to human whole blood by resisting serum uptake and maintaining modest hitchhiking, and also significantly extend circulation retention over 24 hours in BALB/c healthy adult mice after IV injection. Because of their altered circulation profiles, we additionally observe dramatically different organ accumulation profiles compared to bare PLGA NPs. This study establishes an initial breakthrough platform for a modular and transformative targeting technology to hitchhike onto blood components with high efficacy and safety in the bloodstream post-IV administration.

2.
PLoS One ; 18(3): e0282090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961784

RESUMO

BACKGROUND: In healthcare environments, sinks are being increasingly recognized as reservoirs for multidrug-resistant Gram-negative bacteria. In our hospital, carbapenemase-producing, Verona Integron-encoded Metallo-beta-lactamase (VIM)-positive Pseudomonas aeruginosa (VIM-PA) was detected at low endemicity in patients, and environmental culturing revealed that sink drains were primary reservoirs. Therefore, an intervention was initiated in several wards to install sink drain plugs as physical barriers against splashing to prevent transmission of VIM-PA from drain reservoirs to the surrounding sink environment. AIM: To assess the efficacy of the intervention on limiting spread of VIM-PA. METHODS: Swabs were taken from inner sink environments (i.e. drains), and outer sink environments (i.e. wash basins, faucet aerators, and countertops) twice before and three times after the intervention. Siphon water and drain wells were also sampled before and at the moment of the intervention, respectively. All samples were screened for VIM-PA, and isolates were typed with multiple-locus variable-number tandem repeat analysis (MLVA). RESULTS: There was a significant reduction in VIM-PA positivity in both inner (P-value <0.001) and outer (P-value 0.001) sink environments after the intervention. However, VIM-PA recolonization was observed in the inner sink environments of patient rooms, and also in rooms exclusive to healthcare personnel, over time. Surfaces in the outer sink environment were rarely positive for VIM-PA after the intervention. MLVA revealed three genetic clusters, with one found in all wards and room types during the study period. CONCLUSIONS: Drain plugs are a simple and effective infection prevention and control measure to contain spread of VIM-PA from drain reservoirs.


Assuntos
Infecção Hospitalar , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Centros de Atenção Terciária , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/microbiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Controle de Infecções , Farmacorresistência Bacteriana Múltipla , Infecção Hospitalar/microbiologia
3.
J Biomed Mater Res A ; 111(6): 790-800, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36606344

RESUMO

There is an urgent unmet medical need to develop therapeutic options for the ~50% of depression patients suffering from treatment-resistant depression, which is difficult to treat with existing psycho- and pharmaco-therapeutic options. Classical psychedelics, such as the 5HT2A agonists, have re-emerged as a treatment paradigm for depression. Recent clinical trials highlight the potential effectiveness of 5HT2A agonists to improve mood and psychotherapeutic growth in treatment-resistant depression patients, even in those who have failed a median of four previous medications in their lifetime. Moreover, microdosing could be a promising way to achieve long-term alleviation of depression symptoms without a hallucinogenic experience. However, there are a gamut of practical barriers that stymie further investigation of microdosing 5HT2A agonists, including: low compliance with the complicated dosing regimen, high risk of diversion of controlled substances, and difficulty and cost administering the long-term treatment regimens in controlled settings. Here, we developed a drug delivery system composed of multilayered cellulose acetate phthalate (CAP)/Pluronic F-127 (P) films for the encapsulation and interval delivery of 5HT2A agonists from a fully biodegradable and biocompatible implant. CAPP film composition, thickness, and layering strategies were optimized, and we demonstrated three distinct pulses from the multilayered CAPP films in vitro. Additionally, the pharmacokinetics and biodistribution of the 5HT2A agonist 2,5-Dimethoxy-4-iodoamphetamine (DOI) were quantified following the subcutaneous implantation of DOI-loaded single and multilayered CAPP films. Our results demonstrate, for the first time, the interval delivery of psychedelics from an implantable drug delivery system and open the door to future studies into the therapeutic potential of psychedelic delivery.


Assuntos
Alucinógenos , Humanos , Polímeros , Distribuição Tecidual , Preparações Farmacêuticas
4.
Mol Pharm ; 19(12): 4705-4716, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36374992

RESUMO

Traditional approaches to vaccines use whole organisms to trigger an immune response, but they do not typically generate robust cellular-mediated immunity and have various safety risks. Subunit vaccines composed of proteins and/or peptides represent an attractive and safe alternative to whole organism vaccines, but they are poorly immunogenic. Though there are biological reasons for the poor immunogenicity of proteins and peptides, one other key to their relative lack of immunogenicity could be attributed to the poor pharmacokinetic properties of exogenously delivered proteins and peptides. For instance, peptides often aggregate at the site of injection and are not stable in biological fluids, proteins and peptides are rapidly cleared from circulation, and both have poor cellular internalization and endosomal escape. Herein, we developed a delivery system to address the lack of protein immunogenicity by overcoming delivery barriers as well as codelivering immune-stimulating adjuvants. The glycopolymeric nanoparticles (glycoNPs) are composed of a dual-stimuli-responsive block glycopolymer, poly[2-(diisopropylamino)ethyl methacrylate]-b-poly[(pyridyl disulfide ethyl methacrylate)-co-(methacrylamidoglucopyranose)] (p[DPA-b-(PDSMA-co-MAG)]). This polymer facilitates protein conjugation and cytosolic release, the pH-responsive release of lipophilic adjuvants, and pH-dependent membrane disruption to ensure cytosolic delivery of antigens. We synthesized p[DPA-b-(PDSMA-co-MAG)] by reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by the formation and physicochemical characterization of glycoNPs using the p[DPA-b-(PDSMA-co-MAG)] building blocks. These glycoNPs conjugated the model antigen ovalbumin (OVA) and released OVA in response to elevated glutathione levels. Moreover, the glycoNPs displayed pH-dependent drug release of the model hydrophobic drug Nile Red while also exhibiting pH-responsive endosomolytic behavior as indicated by a red blood cell hemolysis assay. GlycoNPs coloaded with OVA and the toll-like receptor 7/8 (TLR-7/8) agonist Resiquimod (R848) activated DC 2.4 dendritic cells (DCs) significantly more than free OVA and R848 and led to robust antigen presentation of the OVA epitope SIINFEKL on major histocompatibility complex I (MHC-I). In sum, the dual-stimuli-responsive glycopolymer introduced here overcomes major protein and peptide delivery barriers and could vastly improve the immunogenicity of protein-based vaccines.


Assuntos
Antígenos , Nanopartículas , Animais , Camundongos , Adjuvantes Imunológicos , Ovalbumina , Nanopartículas/química , Vacinas de Subunidades Antigênicas , Adjuvantes Farmacêuticos , Metacrilatos , Células Dendríticas , Camundongos Endogâmicos C57BL
5.
Macromol Biosci ; 22(12): e2200281, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125638

RESUMO

Macrophages play a diverse, key role in many pathologies, including inflammatory diseases, cardiovascular diseases, and cancer. However, many therapeutic strategies targeting macrophages suffer from systemic off-target toxicity resulting in notoriously narrow therapeutic windows. To address this shortcoming, the development of poly(propylene sulfide)-b-poly(methacrylamidoglucopyranose) [PPS-b-PMAG] diblock copolymer-based nanoparticles (PMAG NPs) capable of targeting macrophages and releasing drug in the presence of reactive oxygen species (ROS) is reported. PMAG NPs have desirable physicochemical properties for systemic drug delivery, including slightly negative surface charge, ≈100 nm diameter, and hemo-compatibility. Additionally, due to the presence of PPS in the NP core, PMAG NPs release drug cargo preferentially in the presence of ROS. Importantly, PMAG NPs display high cytocompatibility and are taken up by macrophages in cell culture at a rate ≈18-fold higher than PEGMA NPs-NPs composed of PPS-b-poly(oligoethylene glycol methacrylate). Computational studies indicate that PMAG NPs likely bind with glucose transporters such as GLUT 1/3 on the macrophage cell surface to facilitate high levels of internalization. Collectively, this study introduces glycopolymeric NPs that are uniquely capable of both receptor-ligand targeting to macrophages and ROS-dependent drug release and that can be useful in many immunotherapeutic settings.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Macrófagos/metabolismo , Polímeros/química
6.
Nanoscale ; 14(16): 6021-6036, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35362493

RESUMO

Linear-dendritic block copolymers (LDBCs) have emerged as promising materials for drug delivery applications, with their hybrid structure exploiting advantageous properties of both linear and dendritic polymers. LDBCs have promising encapsulation efficiencies that can be used to encapsulate both hydrophobic and hydrophilic dyes for bioimaging, cancer therapeutics, and small biomolecules. Additionally, LDBCS can be readily functionalized with varying terminal groups for more efficient targeted delivery. However, depending on structural composition and surface properties, LDBCs also exhibit high dispersities (D), poor shelf-life, and potentially high cytotoxicity to non-target interfacing blood cells during intravenous drug delivery. Here, we show that choline carboxylic acid-based ionic liquids (ILs) electrostatically solvate LDBCs by direct dissolution and form stable and biocompatible IL-integrated LDBC nano-assemblies. These nano-assemblies are endowed with red blood cell-hitchhiking capabilities and show altered cellular uptake behavior ex vivo. When modified with choline and trans-2-hexenoic acid, IL-LDBC dispersity dropped by half compared to bare LDBCs, and showed a significant shift of the cationic surface charge towards neutrality. Proton nuclear magnetic resonance spectroscopy evidenced twice the total amount of IL on the LDBCs relative to an established IL-linear PLGA platform. Transmission electron microscopy suggested the formation of a nanoparticle surface coating, which acted as a protective agent against RBC hemolysis, reducing hemolysis from 73% (LDBC) to 25% (IL-LDBC). However, dramatically different uptake behavior of IL-LDBCs vs. IL-PLGA NPs in RAW 264.7 macrophage cells suggests a different conformational IL-NP surface assembly on the linear versus the linear-dendritic nanoparticles. These results suggest that by controlling the physical chemistry of polymer-IL interactions and assembly on the nanoscale, biological function can be tailored toward the development of more effective and more precisely targeted therapies.


Assuntos
Líquidos Iônicos , Nanopartículas , Colina , Sistemas de Liberação de Medicamentos/métodos , Hemólise , Humanos , Líquidos Iônicos/farmacologia , Nanopartículas/química , Polímeros/química
7.
Biomater Sci ; 8(20): 5516-5537, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33049007

RESUMO

Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These tumors with a 'cold' immunological phenotype are characterized by low numbers of tumor-infiltrating lymphocytes, high numbers of immunosuppressive leukocytes (e.g. regulatory T cells, tumor-associated macrophages), and high production of immune-dampening signals (e.g. IL-10, TGF-ß, IDO-1). Strategies to boost the aptitude of tumors to initiate an immune response (i.e. boost tumor immunogenicity) will turn 'cold' tumors 'hot' and augment the anti-tumor efficacy of current immunotherapies. Approaches to boost tumor immunogenicity already show promise; however, multifaceted delivery and immunobiology challenges exist. For instance, systemic delivery of many immune-stimulating agents causes off-target toxicity and/or the development of autoimmunity, limiting the administrable dose below the threshold needed to achieve efficacy. Moreover, once administered in vivo, molecules such as the nucleic acid-based agonists for many pattern recognition receptors are either rapidly cleared or degraded, and don't efficiently traffic to the intracellular compartments where the receptors are located. Thus, these nucleic acid-based drugs are ineffective without a delivery system. Biomaterials-based approaches aim to enhance current strategies to boost tumor immunogenicity, enable novel strategies, and spare dose-limiting toxicities. Here, we review recent progress to improve cancer immunotherapies by boosting immunogenicity within tumors using immunostimulatory biomaterials.


Assuntos
Materiais Biocompatíveis , Neoplasias , Antígenos de Neoplasias , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias/tratamento farmacológico
8.
Interdiscip Sci ; 7(3): 257-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26223545

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a virus that manifests itself in viral infection with fever, cough, shortness of breath, renal failure and severe acute pneumonia, which often result in a fatal outcome. MERS-CoV has been shown to spread between people who are in close contact. Transmission from infected patients to healthcare personnel has also been observed and is irredeemable with present technology. Genetic studies on MERS-CoV have shown that ORF1ab encodes replicase polyproteins and play a foremost role in viral infection. Therefore, ORF1ab replicase polyprotein may be used as a suitable target for disease control. Viral activity can be controlled by RNA interference (RNAi) technology, a leading method for post transcriptional gene silencing in a sequence-specific manner. However, there is a genetic inconsistency in different viral isolates; it is a great challenge to design potential RNAi (miRNA and siRNA) molecules which can silence the respective target genes rather than any other viral gene simultaneously. In the current study, four effective miRNA and five siRNA molecules for silencing of nine different strains of MERS-CoV were rationally designed and corroborated using computational methods, which might lead to knockdown the activity of virus. siRNA and miRNA molecules were predicted against ORF1ab gene of different strains of MERS-CoV as effective candidate using computational methods. Thus, this method may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of MERS-CoV, at genomic level.


Assuntos
Biologia Computacional/métodos , Inativação Gênica , MicroRNAs/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Interferente Pequeno/metabolismo , Algoritmos , Composição de Bases , Sequência de Bases , MicroRNAs/genética , Conformação de Ácido Nucleico , RNA Interferente Pequeno/genética , Termodinâmica
9.
Interdiscip Sci ; 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25519155

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a virus that manifests itself in viral infection with fever, cough, shortness of breath, renal failure and severe acute pneumonia, which often result in a fatal outcome. MERS-CoV has been shown to spread between people who are in close contact. Transmission from infected patients to healthcare personnel has also been observed and is irredeemable with present technology. Genetic studies on MERS-CoV have shown that ORF 1ab encodes replicase polyproteins and play a foremost role in viral infection. Therefore, ORF 1ab replicase polyprotein may be used as suitable target for disease control. Viral activity can be controlled by RNA interference (RNAi) technology, a leading method for post transcriptional gene silencing in a sequence specific manner. However, there is a genetic inconsistency in different viral isolates; it is a great challenge to design potential RNAi (miRNA and siRNA) molecules which can silence the respective target genes rather than any other viral gene simultaneously. In current study four effective miRNA and five siRNA molecules for silencing of nine different strains of MERS-CoV were rationally designed and corroborated using computational methods, which might lead to knockdown the activity of virus. siRNA and miRNA molecules were predicted against ORF1ab gene of different strains of MERS-CoV as effective candidate using computational methods. Thus, this method may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of MERS-CoV, at genomic level.

10.
Interdiscip Sci ; 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373633

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a virus that manifests itself in viral infection with fever, cough, shortness of breath, renal failure and severe acute pneumonia, which often result in a fatal outcome. MERS-CoV has been shown to spread between people who are in close contact. Transmission from infected patients to healthcare personnel has also been observed and is irredeemable with present technology. Genetic studies on MERS-CoV have shown that ORF 1ab encodes replicase polyproteins and play a foremost role in viral infection. Therefore, ORF 1ab replicase polyprotein may be used as suitable target for disease control. Viral activity can be controlled by RNA interference (RNAi) technology, a leading method for post transcriptional gene silencing in a sequence specific manner. However, there is a genetic inconsistency in different viral isolates; it is a great challenge to design potential RNAi (miRNA and siRNA) molecules which can silence the respective target genes rather than any other viral gene simultaneously. In current study four effective miRNA and five siRNA molecules for silencing of nine different strains of MERS-CoV were rationally designed and corroborated using computational methods, which might lead to knockdown the activity of virus. siRNA and miRNA molecules were predicted against ORF1ab gene of different strains of MERS-CoV as effective candidate using computational methods. Thus, this method may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of MERS-CoV, at genomic level.

11.
Bioinform Biol Insights ; 7: 347-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324329

RESUMO

Saint Louis encephalitis virus, a member of the flaviviridae subgroup, is a culex mosquito-borne pathogen. Despite severe epidemic outbreaks on several occasions, not much progress has been made with regard to an epitope-based vaccine designed for Saint Louis encephalitis virus. The envelope proteins were collected from a protein database and analyzed with an in silico tool to identify the most immunogenic protein. The protein was then verified through several parameters to predict the T-cell and B-cell epitopes. Both T-cell and B-cell immunity were assessed to determine that the protein can induce humoral as well as cell-mediated immunity. The peptide sequence from 330-336 amino acids and the sequence REYCYEATL from the position 57 were found as the most potential B-cell and T-cell epitopes, respectively. Furthermore, as an RNA virus, one important thing was to establish the epitope as a conserved one; this was also done by in silico tools, showing 63.51% conservancy. The epitope was further tested for binding against the HLA molecule by computational docking techniques to verify the binding cleft epitope interaction. However, this is a preliminary study of designing an epitope-based peptide vaccine against Saint Louis encephalitis virus; the results awaits validation by in vitro and in vivo experiments.

12.
Bioinformation ; 9(4): 187-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519164

RESUMO

Staphylococcus aureus is a gram positive bacterium, responsible for both community-acquired and hospital-acquired infection, resulting in a mortality rate of 39%. 43.2% resistance to methicilin and emerging resistance to Fluroquinolone and Oxazolidinone, have evoked the necessity of the establishment of alternative and effective therapeutic approach to treat this bacteria. In this computational study, various database and online software are used to determine some specific targets of Staphylococcus aureus N315 other than those used by Penicillin, Quinolone and Oxazolidinone. For this purpose, among 302 essential proteins, 101 nonhomologous proteins were accrued and 64 proteins which are unique in several metabolic pathways of S. aureus were isolated by using metabolic pathway analysis tools. Furthermore, 7 essentially unique enzymes involved in exclusive metabolic pathways were revealed by this research, which can be potential drug target. Along with these important enzymes, 15 non-homologous proteins located on membrane were identified, which can play a vital role as potential therapeutic targets for the future researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA