Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Immunother Cancer ; 12(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772686

RESUMO

BACKGROUND: CD33 is a tractable target in acute myeloid leukemia (AML) for chimeric antigen receptor (CAR) T cell therapy, but clinical success is lacking. METHODS: We developed 3P14HLh28Z, a novel CD33-directed CD28/CD3Z-based CAR T cell derived from a high-affinity binder obtained through membrane-proximal fragment immunization in humanized mice. RESULTS: We found that immunization exclusively with the membrane-proximal domain of CD33 is necessary for identification of membrane-proximal binders in humanized mice. Compared with clinically validated lintuzumab-based CAR T cells targeting distal CD33 epitopes, 3P14HLh28Z showed enhanced in vitro functionality as well as superior tumor control and increased overall survival in both low antigen density and clinically relevant patient-derived xenograft models. Increased activation and enhanced polyfunctionality led to enhanced efficacy. CONCLUSIONS: Showing for the first time that a membrane-proximal CAR is superior to a membrane-distal one in the setting of CD33 targeting, our results demonstrate the rationale for targeting membrane-proximal epitopes with high-affinity binders. We also demonstrate the importance of optimizing CAR T cells for functionality in settings of both low antigen density and clinically relevant patient-derived models.


Assuntos
Imunoterapia Adotiva , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Animais , Camundongos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
2.
Clin Infect Dis ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801746

RESUMO

BACKGROUND: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiated <4 months versus 4-12 months after cellular therapy. METHODS: We conducted a multicenter prospective observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. RESULTS: We enrolled 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), and chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy immunity. CONCLUSIONS: These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation three to four months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T cell therapy.

3.
Transplant Cell Ther ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768907

RESUMO

In αß T-cell/CD19 B-cell depleted hematopoietic stem cell transplantation (αßhaplo-HSCT) recipients, antithymocyte globulin (ATG; Thymoglobulin) is used for preventing graft rejection and graft-versus-host disease (GVHD). The optimal dosing remains to be established, however. Here we present the first comparative analysis of 3 different ATG dosing strategies and their impact on immune reconstitution and GVHD. Our study aimed to evaluate the effects of 3 distinct dosing strategies of ATG on engraftment success, αß+ and γδ+ T cell immune reconstitution, and the incidence and severity of acute GVHD in recipients of αßhaplo-HSCT. This comparative analysis included 3 cohorts of pediatric patients with malignant (n = 36) or nonmalignant (n = 8) disease. Cohorts 1 and 2 were given fixed ATG doses, whereas cohort 3 received doses via a new nomogram, based on absolute lymphocyte count (ALC) and body weight (BW). Cohort 3 showed a 0% incidence of day 100 grade II-IV acute GVHD, compared to 48% in cohort 1 and 27% in cohort 2. Furthermore, cohort 3 (the ALC/BW-based cohort) had a significant increase in CD4+ and CD8+ naïve T cells by day 90 (P = .04 and .03, respectively). Additionally, we found that the reconstitution and maturation of γδ+ T cells post-HSCT was not impacted across all 3 cohorts. Cumulative ATG exposure in all cohorts was lower than previously reported in T cell-replete settings, with a lower pre-HSCT exposure (<40 AU*day/mL) correlating with engraftment failure (P = .007). Conversely, a post-HSCT ATG exposure of 10 to 15 AU*day/mL was optimal for improving day 100 CD4+ (P = .058) and CD8+ (P = .03) immune reconstitution without increasing the risk of relapse or nonrelapse mortality. This study represents the first comparative analysis of ATG exposure in αßhaplo-HSCT recipients. Our findings indicate that (1) a 1- to 2-fold ATG to ATLG bioequivalence is more effective than previously established standards, and (2) ATG exposure post-HSCT does not adversely affect γδ+ T cell immune reconstitution. Furthermore, a model-based ATG dosing strategy effectively reduces graft rejection and day 100 acute GVHD while also promoting early CD4+/CD8+ immune reconstitution. These insights suggest that further optimization, including more distal administration of higher ATG doses within an ALC/BW-based strategy, will yield even greater improvements in outcomes.

4.
Cytotherapy ; 26(5): 466-471, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430078

RESUMO

BACKGROUND AIMS: Daratumumab, a human IgG monoclonal antibody targeting CD38, is a promising treatment for pediatric patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL). We describe a case of delayed engraftment following a mismatched, unrelated donor hematopoietic stem cell transplant (HSCT) in a 14-year-old female with relapsed T-ALL, treated with daratumumab and chemotherapy. By Day 28 post-HSCT, the patient had no neutrophil engraftment but full donor myeloid chimerism. METHODS: We developed two novel, semi-quantitative, antibody-based assays to measure the patient's bound and plasma daratumumab levels to determine if prolonged drug exposure may have contributed to her slow engraftment. RESULTS: Daratumumab levels were significantly elevated more than 30 days after the patient's final infusion, and levels inversely correlated with her white blood cell counts. To clear daratumumab, the patient underwent several rounds of plasmapheresis and subsequently engrafted. CONCLUSIONS: This is the first report of both delayed daratumumab clearance and delayed stem cell engraftment following daratumumab treatment in a pediatric patient. Further investigation is needed to elucidate the optimal dosing of daratumumab for treatment of acute leukemias in pediatric populations as well as daratumumab's potential effects on hematopoietic stem cells and stem cell engraftment following allogenic HSCT.


Assuntos
Anticorpos Monoclonais , Transplante de Células-Tronco Hematopoéticas , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Feminino , Anticorpos Monoclonais/uso terapêutico , Adolescente , Transplante Homólogo/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Sobrevivência de Enxerto/efeitos dos fármacos
5.
medRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38343800

RESUMO

Background: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective: To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design: Multicenter prospective observational study. Setting: 34 centers in the United States. Participants: 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions: SARS-CoV-2 vaccination as part of routine care. Measurements: We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results: Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations: The majority of participants were adults and received mRNA vaccines. Conclusions: These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.

6.
Blood Adv ; 8(7): 1600-1611, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37878808

RESUMO

ABSTRACT: Teclistamab, a B-cell maturation antigen (BCMA)- and CD3-targeting bispecific antibody, is an effective novel treatment for relapsed/refractory multiple myeloma (R/RMM), but efficacy in patients exposed to BCMA-directed therapies and mechanisms of resistance have yet to be fully delineated. We conducted a real-world retrospective study of commercial teclistamab, capturing both clinical outcomes and immune correlates of treatment response in a cohort of patients (n = 52) with advanced R/RMM. Teclistamab was highly effective with an overall response rate (ORR) of 64%, including an ORR of 50% for patients with prior anti-BCMA therapy. Pretreatment plasma cell BCMA expression levels had no bearing on response. However, comprehensive pretreatment immune profiling identified that effector CD8+ T-cell populations were associated with response to therapy and a regulatory T-cell population associated with nonresponse, indicating a contribution of immune status in outcomes with potential utility as a biomarker signature to guide patient management.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B/uso terapêutico , Estudos Retrospectivos , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo
8.
EClinicalMedicine ; 59: 101983, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37128256

RESUMO

Background: The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods: We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4-12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings: Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4-12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation: These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.

9.
N Engl J Med ; 387(13): 1196-1206, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36170501

RESUMO

BACKGROUND: B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have generated responses in patients with advanced myeloma, but relapses are common. G protein-coupled receptor, class C, group 5, member D (GPRC5D) has been identified as an immunotherapeutic target in multiple myeloma. Preclinical studies have shown the efficacy of GPRC5D-targeted CAR T cells, including activity in a BCMA antigen escape model. METHODS: In this phase 1 dose-escalation study, we administered a GPRC5D-targeted CAR T-cell therapy (MCARH109) at four dose levels to patients with heavily pretreated multiple myeloma, including patients with relapse after BCMA CAR T-cell therapy. RESULTS: A total of 17 patients were enrolled and received MCARH109 therapy. The maximum tolerated dose was identified at 150×106 CAR T cells. At the 450×106 CAR T-cell dose, 1 patient had grade 4 cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome (ICANS), and 2 patients had a grade 3 cerebellar disorder of unclear cause. No cerebellar disorder, ICANS of any grade, or cytokine release syndrome of grade 3 or higher occurred in the 12 patients who received doses of 25×106 to 150×106 cells. A response was reported in 71% of the patients in the entire cohort and in 58% of those who received doses of 25×106 to 150×106 cells. The patients who had a response included those who had received previous BCMA therapies; responses were observed in 7 of 10 such patients in the entire cohort and in 3 of 6 such patients who received 25×106 to 150×106 cells. CONCLUSIONS: The results of this study of a GPRC5D-targeted CAR T-cell therapy (MCARH109) confirm that GPRC5D is an active immunotherapeutic target in multiple myeloma. (Funded by Juno Therapeutics/Bristol Myers Squibb; ClinicalTrials.gov number, NCT04555551.).


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Receptores Acoplados a Proteínas G , Antígeno de Maturação de Linfócitos B/uso terapêutico , Síndrome da Liberação de Citocina/etiologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/etiologia , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores Acoplados a Proteínas G/uso terapêutico , Linfócitos T
10.
Clin Cancer Res ; 28(23): 5149-5155, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170461

RESUMO

PURPOSE: Sustained minimal residual disease (MRD) negativity is associated with long-term survival in multiple myeloma. The gut microbiome is affected by diet, and in turn can modulate host immunity, for example through production of short-chain fatty acids including butyrate. We hypothesized that dietary factors affect the microbiome (abundance of butyrate-producing bacteria or stool butyrate concentration) and may be associated with multiple myeloma outcomes. EXPERIMENTAL DESIGN: We examined the relationship of dietary factors (via a food frequency questionnaire), stool metabolites (via gas chromatography-mass spectrometry), and the stool microbiome (via 16S sequencing - α-diversity and relative abundance of butyrate-producing bacteria) with sustained MRD negativity (via flow cytometry at two timepoints 1 year apart) in myeloma patients on lenalidomide maintenance. The Healthy Eating Index 2015 score and flavonoid nutrient values were calculated from the food frequency questionnaire. The Wilcoxon rank sum test was used to evaluate associations with two-sided P < 0.05 considered significant. RESULTS: At 3 months, higher stool butyrate concentration (P = 0.037), butyrate producers (P = 0.025), and α-diversity (P = 0.0035) were associated with sustained MRD negativity. Healthier dietary proteins, (from seafood and plants), correlated with butyrate at 3 months (P = 0.009) and sustained MRD negativity (P = 0.05). Consumption of dietary flavonoids, plant nutrients with antioxidant effects, correlated with stool butyrate concentration (anthocyanidins P = 0.01, flavones P = 0.01, and flavanols P = 0.02). CONCLUSIONS: This is the first study to demonstrate an association between a plant-based dietary pattern, stool butyrate production, and sustained MRD negativity in multiple myeloma, providing rationale to evaluate a prospective dietary intervention.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Butiratos , Neoplasia Residual , Dieta Saudável , Dieta Vegetariana
11.
Sci Transl Med ; 14(646): eabj2829, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35613281

RESUMO

Microbial diversity is associated with improved outcomes in recipients of allogeneic hematopoietic cell transplantation (allo-HCT), but the mechanism underlying this observation is unclear. In a cohort of 174 patients who underwent allo-HCT, we demonstrate that a diverse intestinal microbiome early after allo-HCT is associated with an increased number of innate-like mucosal-associated invariant T (MAIT) cells, which are in turn associated with improved overall survival and less acute graft-versus-host disease (aGVHD). Immune profiling of conventional and unconventional immune cell subsets revealed that the prevalence of Vδ2 cells, the major circulating subpopulation of γδ T cells, closely correlated with the frequency of MAIT cells and was associated with less aGVHD. Analysis of these populations using both single-cell transcriptomics and flow cytometry suggested a shift toward activated phenotypes and a gain of cytotoxic and effector functions after transplantation. A diverse intestinal microbiome with the capacity to produce activating ligands for MAIT and Vδ2 cells appeared to be necessary for the maintenance of these populations after allo-HCT. These data suggest an immunological link between intestinal microbial diversity, microbe-derived ligands, and maintenance of unconventional T cells.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células T Invariantes Associadas à Mucosa , Humanos , Ligantes
12.
Front Immunol ; 11: 583853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117397

RESUMO

Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Animais , Diferenciação Celular/imunologia , Complemento C1q/imunologia , Células Dendríticas/imunologia , Humanos , Tolerância Imunológica/imunologia , Glicoproteínas de Membrana/imunologia , Monócitos/imunologia , Receptores de Complemento/imunologia , Transdução de Sinais/imunologia
13.
Front Pediatr ; 8: 454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974239

RESUMO

Hematopoietic cell transplantation (HCT) is often a last resort, but potentially curative treatment option for children suffering from hematological malignancies and a variety of non-malignant disorders, such as bone marrow failure, inborn metabolic disease or immune deficiencies. Although efficacy and safety of the HCT procedure has increased significantly over the last decades, the majority of the patients still suffer from severe acute toxicity, viral reactivation, acute or chronic graft-versus-host disease (GvHD) and/or, in case of malignant disease, relapses. Factors influencing HCT outcomes are numerous and versatile. For example, there is variation in the selected graft sources, type of infused cell subsets, cell doses, and the protocols used for conditioning, as well as immune suppression and treatment of adverse events. Moreover, recent pharmacokinetic studies show that medications used in the conditioning regimen (e.g., busulphan, fludarabine, anti-thymocyte globulin) should be dosed patient-specific to achieve optimal exposure in every individual patient. Due to this multitude of variables and site-specific policies/preferences, harmonization between HCT centers is still difficult to achieve. Literature shows that adequate immune recovery post-HCT limits both relapse and non-relapse mortality (death due to viral reactivations and GvHD). Monitoring immune parameters post-HCT may facilitate a timely prediction of outcome. The use of standardized assays to measure immune parameters would facilitate a fast comparison between different strategies tested in different centers or between different clinical trials. We here discuss immune cell markers that may contribute to clinical decision making and may be worth to standardize in multicenter collaborations for future trials.

14.
Mol Immunol ; 84: 26-33, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27914690

RESUMO

Most of the complement proteins in circulation are, by and large, synthesized in the liver. However data accumulated over the past several decades provide incontrovertible evidence that some if not most of the individual complement proteins are also synthesized extrahepatically by activated as well as non-activated cells. The question that is finally being addressed by various investigators is: are the locally synthesized proteins solely responsible for the myriad of biological functions in situ without the contribution of systemic complement? The answer is probably "yes". Among the proteins that are synthesized locally, C1q takes center stage for several reasons. First, it is synthesized predominantly by potent antigen presenting cells such as monocytes, macrophages and dendritic cells (DCs), which by itself is a clue that it plays an important role in antigen presentation and/or DC maturation. Second, it is transiently anchored on the cell surface via a transmembrane domain located in its A chain before it is cleaved off and released into the pericellular milieu. The membrane-associated C1q in turn, is able to sense danger patterns via its versatile antigen-capturing globular head domains. More importantly, locally synthesized C1q has been shown to induce a plethora of biological functions through the induction of immunomodulatory molecules by an autocrine- or paracrine- mediated signaling in a manner that mimics those of TNFα. These include recognition of pathogen- and danger- associated molecular patterns, phagocytosis, angiogenesis, apoptosis and induction of cytokines or chemokines that are important in modulating the inflammatory response. The functional convergence between C1q and TNFα in turn is attributed to their shared genetic ancestry. In this paper, we will infer to the aforementioned "local-synthesis-for-local function" paradigm using as an example, the role played by locally synthesized C1q in autoimmunity in general and in systemic lupus erythematosus in particular.


Assuntos
Complemento C1q/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Animais , Comunicação Autócrina/imunologia , Humanos , Comunicação Parácrina/imunologia
15.
Mol Immunol ; 74: 18-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111569

RESUMO

A substantial body of evidence accumulated over the past 20 years supports the concept that gC1qR is a major pathogen-associated pattern recognition receptor (PRR). This conclusion is based on the fact that, a wide range of bacterial and viral ligands are able to exploit gC1qR to either suppress the host's immune response and thus enhance their survival, or to gain access into cells to initiate disease. Of the extensive array of viral ligands that have affinity for gC1qR, the HIV-1 envelope glycoprotein gp41, and the core protein of hepatitis C virus (HCV) are of major interest as they are known to contribute to the high morbidity and mortality caused by these pathogens. While the HCV core protein binds gC1qR and suppresses T cell proliferation resulting in a significantly diminished immune response, the gp41 employs gC1qR to induce the surface expression of the NK cell ligand, NKp44L, on uninfected CD4(+) T cells, thereby rendering them susceptible to autologous destruction by NKp44 receptor expressing NK cells. Because of the potential for the design of peptide-based or antibody-based therapeutic options, the present studies were undertaken to define the gC1qR interaction sites for these pathogen-associated molecular ligands. Employing a solid phase microplate-binding assay, we examined the binding of each viral ligand to wild type gC1qR and 11 gC1qR deletion mutants. The results obtained from these studies have identified two major HCV core protein sites on a domain of gC1qR comprising of residues 144-148 and 196-202. Domain 196-202 in turn, is located in the last half of the larger gC1qR segment encoded by exons IV-VI (residues 159-282), which was proposed previously to contain the site for HCV core protein. The major gC1qR site for gp41 on the other hand, was found to be in a highly conserved region encoded by exon IV and comprises of residues 174-180. Interestingly, gC1qR residues 174-180 also constitute the cell surface-binding site for soluble gC1qR (sgC1qR), which can bind to the cell surface in an autocrine/paracrine manner via surface expressed fibrinogen or other membrane molecules. The identification of the sites for these viral ligands should therefore provide additional targets for the design of peptide-based or antigen-based therapeutic strategies.


Assuntos
Proteínas de Transporte/química , Proteína gp41 do Envelope de HIV/imunologia , Proteínas Mitocondriais/química , Receptores de Reconhecimento de Padrão/química , Proteínas do Core Viral/imunologia , Sítios de Ligação/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte/imunologia , Humanos , Proteínas Mitocondriais/imunologia , Monócitos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células U937
16.
Front Immunol ; 5: 278, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018754

RESUMO

The ability of circulating blood monocytes to express C1q receptors (cC1qR and gC1qR) as well as to synthesize and secrete the classical pathway proteins C1q, C1r, and C1s and their regulator, C1-INH is very well established. What is intriguing, however, is that, in addition to secretion of the individual C1 proteins monocytes are also able to display macromolecular C1 on their surface in a manner that is stable and functional. The cell surface C1 complex is presumably formed by a Ca(2+)-dependent association of the C1r2⋅C1s2 tetramer to C1q, which in turn is anchored via a membrane-binding domain located in the N-terminus of its A-chain as shown previously. Monocytes, which circulate in the blood for 1-3 days before they move into tissues throughout the body, not only serve as precursors of macrophages and dendritic cells (DCs), but also fulfill three main functions in the immune system: phagocytosis, antigen presentation, and cytokine production. Since the globular heads of C1q within the membrane associated C1 are displayed outwardly, we hypothesize that their main function - especially in circulating monocytes - is to recognize and capture circulating immune complexes or pathogen-associated molecular patterns in the blood. This in turn may give crucial signal, which drives the monocytes to migrate into tissues, differentiate into macrophages or DCs, and initiate the process of antigen elimination. Unoccupied C1q on the other hand may serve to keep monocytes in a pre-dendritic phenotype by silencing key molecular players thus ensuring that unwarranted DC-driven immune response does not occur. In this paper, we will discuss the role of monocyte/DC-associated C1q receptors, macromolecular C1 as well as secreted C1q in both innate and acquired immune responses.

17.
J Immunol ; 192(1): 377-84, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24319267

RESUMO

Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1ß. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37 °C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R.


Assuntos
Comunicação Autócrina , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Proteínas Mitocondriais/metabolismo , Receptor B1 da Bradicinina/metabolismo , Transdução de Sinais , Comunicação Autócrina/efeitos dos fármacos , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Células Endoteliais/efeitos dos fármacos , Fibrinogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Receptor B1 da Bradicinina/genética , Transdução de Sinais/efeitos dos fármacos
18.
Adv Exp Med Biol ; 735: 97-110, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23402021

RESUMO

Abstract The receptor for the globular heads of C1q, gC1qR/p33, is a widely expressed cellular protein, which binds to diverse ligands including plasma proteins, cellular proteins, and microbial ligands. In addition to C1q, gC1qR also binds high molecular weight kininogen (HK), which also has two other cell surface sites, namely, cytokeratin 1 and urokinase plasminogen activator receptor (uPAR). On endothelial cells (ECs), the three molecules form two closely associated bimolecular complexes of gC1qR/cytokeratin 1 and uPAR/cytokeratin 1. However, by virtue of its high affinity for HK, gC1qR plays a central role in the assembly of the kallikrein-kinin system, leading to the generation of bradykinin (BK). BK in turn is largely responsible for the vascular leakage and associated inflammation seen in angioedema patients. Therefore, blockade of gC1qR by inhibitory peptides or antibodies may not only prevent the generation of BK but also reduce Clq-induced or microbial-ligand-induced inflammatory responses. Employing synthetic peptides and gClqR deletion mutants, we confirmed previously predicted sites for C1q (residues 75-96) and HK (residues 204-218) and identified additional sites for both C1q and HK (residues 190-202), for C1q (residues 144-162), and for HIV-1 gp41 (residues 174-180). With the exception of residues 75-96, which is located in the alphaA coiled-coil N-terminal segment, most of the identified residues form part of the highly charged loops connecting the various beta-strands in the crystal structure. Taken together, the data support the notion that gC1qR could serve as a novel molecular target for the design of antibody-based and/or peptide-based therapy to attenuate acute and/or chronic inflammation associated with vascular leakage and infection.


Assuntos
Complemento C1q/efeitos dos fármacos , Infecções/tratamento farmacológico , Inflamação/tratamento farmacológico , Receptores de Complemento/efeitos dos fármacos , Animais , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Receptores de Complemento/química , Receptores de Complemento/genética
19.
Blood ; 120(6): 1228-36, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22700724

RESUMO

C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the 2 C1q receptors found on the DC surface-gC1qR and cC1qR-lack a direct conduit into intracellular elements, we postulated that the receptors must form complexes with transmembrane partners. In the present study, we show that DC-SIGN, a C-type lectin expressed on DCs, binds directly to C1q, as assessed by ELISA, flow cytometry, and immunoprecipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific, and both intact C1q and the globular portion of C1q bound to DC-SIGN. Whereas IgG reduced this binding significantly, the Arg residues (162-163) of the C1q-A chain, which are thought to contribute to the C1q-IgG interaction, were not required for C1q binding to DC-SIGN. Binding was reduced significantly in the absence of Ca(2+) and by preincubation of DC-SIGN with mannan, suggesting that C1q binds to DC-SIGN at its principal Ca(2+)-binding pocket, which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. The results of the present study suggest that C1q/gC1qR may regulate DC differentiation and function through the DC-SIGN-mediated induction of cell-signaling pathways.


Assuntos
Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Complemento C1q/metabolismo , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Superfície Celular/metabolismo , Ligação Competitiva , Cálcio/farmacologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/fisiologia , Humanos , Modelos Biológicos , Monócitos/metabolismo , Monócitos/fisiologia , Complexos Multiproteicos/fisiologia , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia
20.
Front Immunol ; 3: 38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22566921

RESUMO

The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA