Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(25): eabo3093, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731864

RESUMO

Small-pore zeolites are gaining increasing attention owing to their superior catalytic performance. Despite being critical for the catalytic activity and lifetime, postsynthetic tuning of bulk Si/Al ratios of small-pore zeolites has not been achieved with well-preserved crystallinity because of the limited mass transfer of aluminum species through narrow micropores. Here, we demonstrate a postsynthetic approach to tune the composition of small-pore zeolites using a previously unexplored strategy named pore-opening migration process (POMP). Acid treatment assisted by stabilization of the zeolite framework by organic cations in pores is proven to be successful for the removal of Al species from zeolite via POMP. Furthermore, the dealuminated AFX zeolite is treated via defect healing, which yields superior hydrothermal stability against severe steam conditions. Our findings could facilitate industrial applications of small-pore zeolites via aluminum content control and defect healing and could elucidate the structural reconstruction and arrangement processes for inorganic microporous materials.

2.
Chem Commun (Camb) ; 51(63): 12567-70, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26154841

RESUMO

We herein present a top-down methodology to prepare nanosized zeolites with tunable size by combining post-synthesis milling and fast recrystallization of several minutes (10 min for SSZ-13 and 5 min for AlPO4-5). A continuous-flow recrystallization process is demonstrated to further enhance the overall product efficiency.

3.
Angew Chem Int Ed Engl ; 54(19): 5683-7, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25801140

RESUMO

Characteristics of zeolite formation, such as being kinetically slow and thermodynamically metastable, are the main bottlenecks that obstruct a fast zeolite synthesis. We present an ultrafast route, the first of its kind, to synthesize high-silica zeolite SSZ-13 in 10 min, instead of the several days usually required. Fast heating in a tubular reactor helps avoid thermal lag, and the synergistic effect of addition of a SSZ-13 seed, choice of the proper aluminum source, and employment of high temperature prompted the crystallization. Thanks to the ultra-short period of synthesis, we established a continuous-flow preparation of SSZ-13. The fast-synthesized SSZ-13, after copper-ion exchange, exhibits outstanding performance in the ammonia selective catalytic reduction (NH3 -SCR) of nitrogen oxides (NOx ), showing it to be a superior catalyst for NOx removal. Our results indicate that the formation of high-silica zeolites can be extremely fast if bottlenecks are effectively widened.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA