Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 69: 59-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775076

RESUMO

The microbial conversion of glycerol into value-added commodity products has emerged as an attractive means to meet the demands of biosustainability. However, glycerol is a non-preferential carbon source for productive fermentation because of its low energy density. We employed evolutionary and metabolic engineering in tandem to construct an Escherichia coli strain with improved GABA production using glycerol as the feedstock carbon. Adaptive evolution of E. coli W under glycerol-limited conditions for 1300 generations harnessed an adapted strain with a metabolic system optimized for glycerol utilization. Mutation profiling, enzyme kinetic assays, and transcriptome analysis of the adapted strain allowed us to decipher the basis of glycerol adaptation at the molecular level. Importantly, increased substrate influx mediated by the mutant glpK and modulation of intracellular cAMP levels were the key drivers of improved fitness in the glycerol-limited condition. Leveraging the enhanced capability of glycerol utilization in the strain, we constructed a GABA-producing E. coli W-derivative with superior GABA production compared to the wild-type. Furthermore, rationally designed inactivation of the non-essential metabolic genes, including ackA, mgsA, and gabT, in the glycerol-adapted strain improved the final GABA titer and specific productivity by 3.9- and 4.3-fold, respectively, compared with the wild-type.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Carbono/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Glicerol/metabolismo , Laboratórios , Engenharia Metabólica , Ácido gama-Aminobutírico/genética
2.
Adv Healthc Mater ; 7(16): e1800052, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29888531

RESUMO

Here, a novel anticancer gene therapy with a bacterial tRNase gene, colicin D or virulence associated protein C (VapC), is suggested using biodegradable polymeric nanoparticles, such as poly(ß-amino esters) (PBAEs) as carriers. These genes are meticulously selected, aiming at inhibiting translation in the recipients by hydrolyzing specific tRNA species. In terms of nanoparticles, out of 9 PBAE formulations, a leading polymer, (polyethylene oxide)4 -bis-amine end-capped poly(1,4-butanediol diacrylate-co-5-amino-1-pentanol) (B4S5E5), is identified that displays higher gene delivery efficacy to cancer cells compared with the leading commercial reagent Lipofectamine 2000. Interestingly, the B4S5E5 PBAE nanoparticles complexed with colicin D or VapC plasmid DNA induce significant toxicity highly specific to cancer cells by triggering apoptosis. In contrast, the PBAE nanoparticles do not induce these cytotoxic effects in noncancerous cells. In a mouse melanoma model of grafted murine B16-F10 cells, it is demonstrated that treatment with PBAE nanoparticles complexed with these tRNase genes significantly reduces tumor growth rate and delays tumor relapse. Moreover, increased stability of PBAE by PEGylation further enhances the therapeutic effect of tRNase gene treatment and improves survival of animals. This study highlights a nonviral gene therapy that is highly promising for the treatment of cancer.


Assuntos
Terapia Genética/métodos , Melanoma/terapia , Nanopartículas/química , Polímeros/química , Animais , Linhagem Celular Tumoral , Feminino , Marcação In Situ das Extremidades Cortadas , Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C
3.
Anal Biochem ; 532: 38-44, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600127

RESUMO

A myc-tag and of which recognition by an antibody 9E10 has long been used for the detection and purification of recombinant proteins. We have previously expanded the application of the tag to the specific detection and purification of backbone-cyclized proteins. Here we sought a more practical way to using the 9E10 antibody by expressing its single chain antibody (scAb) form in Escherichia coli. The combined use of a strong T7 promoter and auto-induction strategy rather than early to mid-log induction of a Lac promoter resulted in the soluble over-expression of 9E10 scAb. However, the co-expression of a chaperone, Skp, was absolutely necessary for the activity even when the protein was expressed in a soluble manner. We could purify about 4 mg of 9E10 scAb from 1 l of culture, and the resulting scAb could be used to detect and purify the backbone-cyclized protein as the parental full-length 9E10. Moreover, the immunoaffinity resin prepared using 9E10 scAb could be regenerated several times after the elution of bound proteins using an acid, which added more value to the ready preparation of the active antibody in bacteria.


Assuntos
Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/análise , Engenharia de Proteínas/métodos , Proteínas Proto-Oncogênicas c-myc/imunologia , Proteínas Recombinantes de Fusão/análise , Anticorpos de Cadeia Única/análise , Ciclização , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
4.
Chembiochem ; 17(13): 1198-201, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151886

RESUMO

The genetic code in most organisms codes for 20 proteinogenic amino acids or translation stop. In order to encode more than 20 amino acids in the coding system, one of stop codons is usually reprogrammed to encode a non-proteinogenic amino acid. Although this approach works, usually only one amino acid is added to the amino acid repertoire. In this study, we incorporated non-proteinogenic amino acids into a protein by using a sense codon. As all the codons are allocated in the universal genetic code, we destroyed all the tRNA(Arg) in a cell-free protein synthesis system by using a tRNA(Arg) -specific tRNase, colicin D. Then by supplementing the system with tRNACCU , the translation system was partially restored. Through this creative destruction, reprogrammable codons were successfully created in the system to encode modified lysines along with the 20 proteinogenic amino acids.


Assuntos
Arginina/genética , Evolução Molecular Direcionada , Código Genético , Códon , Colicinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Biossíntese de Proteínas/genética , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo
5.
J Biosci Bioeng ; 115(2): 154-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23026450

RESUMO

Bacterial glutamate decarboxylase (GAD) transforms glutamate into γ-aminobutyric acid (GABA) with the consumption of a proton. The enzyme is active under acidic environments only and sharply loses its activity as pH approaches neutrality with concomitant structural deformation. In an attempt to understand better the role of this cooperative loss of activity upon pH shifts, we prepared and studied a series of GAD site-specific mutants. In this report, we show that the cooperativeness was kept intact by at least two residues, Glu89 and His465, of which Glu89 is newly identified to be involved in the cooperativity system of GAD. Double mutation on these residues not only broke the cooperativity in the activity change but also yielded a mutant GAD that retained the activity at neutral pH. The resulting mutant GAD that was active at neutral pH inhibited the cell growth in a glycerol medium by converting intracellular Glu into GABA in an uncontrolled manner, which explains in part why the cooperativeness of GAD has to be kept by several layers of safety keepers. This unexpected result might be utilized to convert a low-valued by-product of biodiesel production, glycerol, into value-added product, GABA.


Assuntos
Escherichia coli/enzimologia , Glutamato Descarboxilase/química , Glutamato Descarboxilase/metabolismo , Engenharia de Proteínas , Biocombustíveis/provisão & distribuição , Glutamato Descarboxilase/genética , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Histidina/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Mutação , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA