Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(742): eadh8846, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598616

RESUMO

Posttransplant lymphoproliferative disease (PTLD) is a major therapeutic challenge that has been difficult to study using human cells because of a lack of suitable models for mechanistic characterization. Here, we show that ex vivo-differentiated B cells isolated from a subset of healthy donors can elicit pathologies similar to PTLD when transferred into immunodeficient mice. The primary driver of PTLD-like pathologies were IgM-producing plasmablasts with Epstein-Barr virus (EBV) genomes that expressed genes commonly associated with EBV latency. We show that a small subset of EBV+ peripheral blood-derived B cells expressing self-reactive, nonmutated B cell receptors (BCRs) expand rapidly in culture in the absence of BCR stimulation. Furthermore, we found that in vitro and in vivo expansion of EBV+ plasmablasts required BCR signaling. Last, treatment of immunodeficient mice with the BCR pathway inhibitor, ibrutinib, delays onset of PTLD-like pathologies in vivo. These data have implications for the diagnosis and care of transplant recipients who are at risk of developing PTLD.


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , Humanos , Animais , Camundongos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Herpesvirus Humano 4 , Transtornos Linfoproliferativos/terapia , Transdução de Sinais , Linfócitos B
2.
Proc Natl Acad Sci U S A ; 121(7): e2315688121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315857

RESUMO

Integrating reactive radicals into membranes that resemble biological membranes has always been a pursuit for simultaneous organics degradation and water filtration. In this research, we discovered that a radical polymer (RP) that can directly trigger the oxidative degradation of sulfamethozaxole (SMX). Mechanistic studies by experiment and density functional theory simulations revealed that peroxyl radicals are the reactive species, and the radicals could be regenerated in the presence of O2. Furthermore, an interpenetrating RP network membrane consisting of polyvinyl alcohol and the RP was fabricated to demonstrate the simultaneous filtration of large molecules in the model wastewater stream and the degradation of ~ 85% of SMX with a steady permeation flux. This study offers valuable insights into the mechanism of RP-triggered advanced oxidation processes and provides an energy-efficient solution for the degradation of organic compounds and water filtration in wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA