Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(2): e0103623, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289058

RESUMO

The Calvatia gigantea is commonly used traditional medicinal edible fungus, which has multiple pharmacological effects. This paper reports the high-quality draft genome assembly of Calvatia gigantea CGMCC5.9, which consists of 39 scaffolds with 36.6 Mb (GC content, 48.37%), an N50 of 1,467,728 bp.

2.
BMC Genomics ; 24(1): 554, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726686

RESUMO

BACKGROUND: The Inonotus obliquus mushroom, a wondrous fungus boasting edible and medicinal qualities, has been widely used as a folk medicine and shown to have many potential pharmacological secondary metabolites. The purpose of this study was to supply a global landscape of genome-based integrated omic analysis of the fungus under lab-growth conditions. RESULTS: This study presented a genome with high accuracy and completeness using the Pacbio Sequel II third-generation sequencing method. The de novo assembled fungal genome was 36.13 Mb, and contained 8352 predicted protein-coding genes, of which 365 carbohydrate-active enzyme (CAZyme)-coding genes and 19 biosynthetic gene clusters (BCGs) for secondary metabolites were identified. Comparative transcriptomic and proteomic analysis revealed a global view of differential metabolic change between seed and fermentation culture, and demonstrated positive correlations between transcription and expression levels of 157 differentially expressed genes involved in the metabolism of amino acids, fatty acids, secondary metabolites, antioxidant and immune responses. Facilitated by the widely targeted metabolomic approach, a total of 307 secondary substances were identified and quantified, with a significant increase in the production of antioxidant polyphenols. CONCLUSION: This study provided the comprehensive analysis of the fungus Inonotus obliquus, and supplied fundamental information for further screening of promising target metabolites and exploring the link between the genome and metabolites.


Assuntos
Agaricales , Agaricales/genética , Antioxidantes , Proteômica , Inonotus
3.
Anal Methods ; 15(24): 2915-2924, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37306229

RESUMO

Simultaneous and ultrasensitive detection of multiple microRNA (miRNA) biomarkers is an essential precondition for early cancer diagnosis and treatment. Here we developed a sandwich surface-enhanced Raman scattering (SERS) sensor based on Au@Ag core-shell nanorods combined with duplex specific nuclease-mediated signal amplification (DSNSA) for quantitative detection of multiple breast cancer miRNA biomarkers. The DSNSA strategy enables quantitative detection of target miRNA through rehybridizing the capture probe DNA-SERSnanotag conjugates to trigger signal amplification. The Au@Ag core-shell nanorods coated with an Ag shell exhibit excellent SERS performance, implying that molecules can be concentrated by the Ag shell at the hot spots. By monitoring the Raman signal attenuation of hot spots in the presence of target miRNAs, three breast cancer associated miRNAs (miR-21, miR-155, and let 7b) were simultaneously determined using the sandwich SERS sensor, and their detection limits (LODs) were 0.05 fM, 0.063 fM and 0.037 fM, respectively. These results indicated that our sandwich SERS sensor combined with the DSNSA strategy holds remarkable promise for multiplex detection of cancer biomarkers and contributes to early diagnosis of cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Ouro , Análise Espectral Raman , Biomarcadores Tumorais
4.
Arch Virol ; 167(4): 1075-1087, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35246734

RESUMO

Analysis of orthology is important for understanding protein conservation, function, and phylogenomics. In this study, we performed a comprehensive analysis of gene orthology in the family Ascoviridae based on identification of 366 protein homologue groups and phylogenetic analysis of 34 non-single-copy proteins. Our findings revealed 90 newly annotated proteins, five newly identified core proteins for the family Ascoviridae, and 14 core proteins for the genus Ascovirus. A phylogenomic tree of 11 Ascoviridae members was constructed based on a concatenation of 35 of the 45 ortholog groups. In combination with phosphoproteomic results and conservation estimations, 30 conserved phosphorylation sites on 17 phosphoproteins were identified from a total of 176 phosphosites on 57 phosphoproteins from Heliothis virescens ascovirus 3h (HvAV-3h), providing potential research targets for investigating the role of these protein in the regulation of viral infection. This study will facilitate genome annotation and comparison of further Ascoviridae members as well as functional genomic investigations.


Assuntos
Ascoviridae , Mariposas , Animais , Fosforilação , Filogenia , Proteínas/genética
5.
Mycologia ; 113(2): 268-277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33555992

RESUMO

Amauroderma rugosum is one of the traditional Chinese medicinal mushrooms and is used to reduce inflammation, treat diuretic and upset stomach, and prevent cancer. Here, we present a genomic resource of Amauroderma rugosum (ACCC 51706) for further understanding its biology and exploration of the synthesis pathway of bioactive compounds. Genomic DNA was extracted and then subjected to Illumina HiSeq X Ten and PacBio Sequel I sequencing. The final genome is 40.66 Mb in size, with an N50 scaffold size of 36.6 Mb, and encodes 10 181 putative predicted genes. Among them, 6931 genes were functionally annotated. Phylogenomic analysis suggested that A. rugosum and Ganoderma sinense were not clustered together into a group and the latter was grouped with the Polyporaceae. Further, we also identified 377 carbohydrate-active enzymes (CAZymes) and 15 secondary metabolite biosynthetic gene clusters. This is the first genome-scale assembly and annotation for an Amauroderma species. The identification of novel secondary metabolite biosynthetic gene clusters would promote pharmacological research and development of novel bioactive compounds in the future.


Assuntos
Família Multigênica , Filogenia , Polyporaceae/classificação , Polyporaceae/genética , Sequência de Bases , Vias Biossintéticas/genética , Genoma Fúngico , Medicina Tradicional Chinesa , Anotação de Sequência Molecular , Polyporaceae/metabolismo , Metabolismo Secundário/genética
6.
Gene ; 742: 144586, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179171

RESUMO

Pycnoporus sanguineus, an edible mushroom, produces antimicrobial and antitumor bioactive compounds and pH- and thermo- stable laccases that have multiple potential biotechnological applications. Here we reported the complete genome of the species Pycnoporus sanguineus ACCC 51,180 by using the combination of Illumina HiSeq X Ten and the PacBio sequencing technology. The represented genome is 36.6 Mb composed of 59 scaffolds with 12,086 functionally annotated protein-coding genes. The genome of Pycnoporus sanguineus encodes at least 19 biosynthetic gene clusters for secondary metabolites, including a terpene cluster for biosynthesis of the antitumor clavaric acid. Seven laccases were identified, while 22 genes were found to be involved in the kynurenine pathway in which the intermediate metabolite 3-hydroxyanthranilic acid were catalyzed by laccases into cinnabarinic acid. This study represented the third genome of the genus Pycnoporus, and wound facilitate the exploration of useful sources from Pycnoporus sanguineus for future industrial applications.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico/genética , Microbiologia Industrial/métodos , Lacase/genética , Pycnoporus/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Cinurenina/metabolismo , Lacase/metabolismo , Engenharia Metabólica , Oxazinas/metabolismo , Estabilidade Proteica , Pycnoporus/enzimologia , Metabolismo Secundário/genética
7.
Virology ; 537: 157-164, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493654

RESUMO

ODV-E66 is a major envelope proteins of baculovirus occlusion derived virus (ODV) with chondroitinase activity. Here, we studied the roles of ODV-E66 during Helicoverpa armigera nucleopolyhedrovirus (HearNPV) primary infection. ODV-E66 is a late viral protein dispensable for BV production and ODV morphogenesis. Deletion of odv-e66 had a profound effect on HearNPV oral infectivity in 4th instar larvae with a 50% lethal concentration (LC50) value of 26 fold higher than that of the repaired virus, compared to in 3rd instar larvae. Calcofluor white, an agent which destroys the peritrophic membrane (PM), could rescue the oral infectivity of odv-e66 deleted HearNPV, implying the PM may be the target of ODV-E66. In vitro assays showed HearNPV ODV-E66 has chondroitinase activity. Electron microscopy demonstrated that odv-e66 deletion alleviated the damage to the PM caused by HearNPV infection. These data suggest an important role of ODV-E66 in the penetration of the PM during oral infection.


Assuntos
Lepidópteros/virologia , Nucleopoliedrovírus/crescimento & desenvolvimento , Proteínas do Envelope Viral/metabolismo , Fatores de Virulência/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Condroitinases e Condroitina Liases/metabolismo , Deleção de Genes , Larva/virologia , Dose Letal Mediana , Boca/virologia , Análise de Sobrevida , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética
8.
Virology ; 535: 144-153, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31302508

RESUMO

The baculovirus core gene vp91 has been reported to be essential for nucleocapsid assembly and oral infection. Here, we studied the function of vp91 by analyzing its homologue, ha76, in Helicoverpa armigera nucleopolyhedrovirus (HearNPV). HA76 was expressed at the late stage of HearNPV infection; deletion of ha76 showed that the gene is required for budded virus production. A series of recombinants with truncated ha76 was constructed and analyzed in vitro and in vivo. The results showed that the region encoding the C-terminus of HA76 was essential for nucleocapsid assembly, whereas the N-terminal cysteine-rich region was responsible for oral infection. Electron microscope analyses further showed that the cysteine-rich region contributed to morphogenesis of occlusion bodies (OBs), with amino acids 136-223 of HA76 being critical for this function. The results revealed a novel function of VP91 and suggested that the impact on OB morphogenesis is partially related to oral infectivity.


Assuntos
Nucleopoliedrovírus/crescimento & desenvolvimento , Corpos de Oclusão Virais/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Liberação de Vírus , Deleção de Genes , Perfilação da Expressão Gênica , Microscopia Eletrônica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleopoliedrovírus/genética , Genética Reversa , Deleção de Sequência , Proteínas Virais/genética
9.
Virology ; 535: 200-209, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31319277

RESUMO

Hsp90, a highly conserved cellular molecular chaperone, is involved in the life cycle of many viruses. A recent proteomics study revealed that Hsp90 was incorporated into the budded virions (BVs) of baculovirus, we therefore explored the role of Hsp90 during Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection process. The results showed that Hsp90 was essential for AcMNPV BV propagation in cultured cells. Electron microscopy detected that nucleocapsids failed to egress from the nucleus to the cytoplasm for further BV budding. Inactivation of Hsp90 abolished virus-triggered nuclear actin polymerization, a process providing essential driving forces for nucleocapsid egress. Further analyses suggested that this was due to the selectively regulation of the proper protein levels and nuclear accumulation of P40 subunit of host actin related protein 2/3 complex (Arp2/3). Thus, Hsp90 participates in baculovirus BV propagation by facilitating nuclear actin polymerization required for progeny BV production.


Assuntos
Actinas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteínas Nucleares/metabolismo , Nucleopoliedrovírus/crescimento & desenvolvimento , Polimerização , Montagem de Vírus , Animais , Microscopia Eletrônica de Transmissão , Células Sf9 , Spodoptera , Vírion/ultraestrutura , Liberação de Vírus
10.
Front Immunol ; 10: 1182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191546

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening infectious disease caused by a novel phlebovirus, SFTS virus (SFTSV). Currently, there is no vaccine or antiviral available and the viral pathogenesis remains largely unknown. In this study, we demonstrated that SFTSV infection results in substantial production of serum interferon-γ (IFN-γ) in patients and then that IFN-γ in turn exhibits a robust anti-SFTSV activity in cultured cells, indicating the potential role of IFN-γ in anti-SFTSV immune responses. However, the IFN-γ anti-SFTSV efficacy was compromised once viral infection had been established. Consistently, we found that viral nonstructural protein (NSs) expression counteracts IFN-γ signaling. By protein interaction analyses combined with mass spectrometry, we identified the transcription factor of IFN-γ signaling pathway, STAT1, as the cellular target of SFTSV for IFN-γ antagonism. Mechanistically, SFTSV blocks IFN-γ-triggered STAT1 action through (1) NSs-STAT1 interaction-mediated sequestration of STAT1 into viral inclusion bodies and (2) viral infection-induced downregulation of STAT1 protein level. Finally, the efficacy of IFN-γ as an anti-SFTSV drug in vivo was evaluated in a mouse infection model: IFN-γ pretreatment but not posttreatment conferred significant protection to mice against lethal SFTSV infection, confirming IFN-γ's anti-SFTSV effect and viral antagonism against IFN-γ after the infection establishment. These findings present a picture of virus-host arm race and may promote not only the understanding of virus-host interactions and viral pathogenesis but also the development of antiviral therapeutics.


Assuntos
Infecções por Bunyaviridae/imunologia , Interferon gama/imunologia , Phlebovirus/imunologia , Fator de Transcrição STAT1/imunologia , Animais , Antivirais/administração & dosagem , Antivirais/sangue , Antivirais/imunologia , Infecções por Bunyaviridae/tratamento farmacológico , Infecções por Bunyaviridae/virologia , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon gama/administração & dosagem , Interferon gama/sangue , Camundongos Endogâmicos ICR , Phlebovirus/efeitos dos fármacos , Phlebovirus/fisiologia , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Vero , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
11.
J Gen Virol ; 100(2): 301-307, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30540243

RESUMO

Ascoviruses are enveloped, circular, double-stranded DNA viruses that can effectively control the appetite of lepidopteran larvae, thereby reducing the consequent damage and economic losses to crops. In this study, the virion of a sequenced Heliothis virescens ascovirus 3i (HvAV-3i) strain was used to perform proteomic analysis using both in-gel and in-solution digestion. A total of 81 viral proteins, of which 67 were associated with the virions, were identified in the proteome of HvAV-3i virions. Among these proteins, 23 with annotated functions were associated with DNA/RNA metabolism/transcription, virion assembly, sugar and lipid metabolism, signalling, cellular homoeostasis and cell lysis. Twenty-one viral membrane proteins were also identified. Some of the minor 'virion' proteins identified may be non-virion contaminants of viral proteins synthesized during replication, identified by more recent and highly sensitive methods. The extensive identification of the ascoviral proteome will establish a foundation for further investigation of ascoviral replication and infection.


Assuntos
Ascoviridae/química , Proteoma/análise , Proteínas Virais/análise , Vírion/química , Biologia Computacional , Proteômica
12.
Virol Sin ; 33(4): 359-368, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30155853

RESUMO

The Cyclophragma undans nucleopolyhedrovirus (CyunNPV), a potential pest control agent, was isolated from Cyclophragma undans (Lepidoptera: Lasiocampidae), an important forest pest. In the present study, we performed detailed genome analysis of CyunNPV and compared its genome to those of other Group I alphabaculoviruses. Sequencing of the CyunNPV genome using the Roche 454 sequencing system generated 142,900 bp with a G + C content of 45%. Genome analysis predicted a total of 147 hypothetical open reading frames comprising 38 baculoviral core genes, 24 lepidopteran baculovirus conserved genes, nine Group I Alphabaculovirus conserved genes, 71 common genes, and five genes that are unique to CyunNPV. In addition, the genome contains 13 homologous repeated sequences (hrs). Phylogenetic analysis groups CyunNPV under a distinct branch within clade "a" of Group I in the genus Alphabaculovirus. Unlike other members of Group I, CyunNPV harbors only nine of the 11 genes previously determined to be specific to Group I viruses. Furthermore, the CyunNPV lacks the tyrosine phosphatase gene and the ac30 gene. The CyunNPV F-like protein contains two insertions of continuous polar amino acids, one at the conventional fusion peptide and a second insertion at the pre-transmembrane domain. The insertions are likely to affect the fusion function and suggest an evolutionary process that led to inactivation of the F-like protein. The above findings imply that CyunNPV is a distinct species under Group I Alphabaculovirus.


Assuntos
Genoma Viral/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Filogenia , Animais , Baculoviridae/genética , Composição de Bases , Sequência de Bases , DNA Viral/genética , Deleção de Genes , Genes Virais , Lepidópteros/virologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Proteínas Virais de Fusão/genética
13.
Arch Virol ; 163(10): 2849-2853, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29948385

RESUMO

Ascoviruses are circular double-stranded DNA viruses that infect insects. Herein we sequenced and analyzed the genome of the previously unrecorded ascovirus isolate Heliothis virescens ascovirus 3i (HvAV-3i). The genome size is 185,650 bp with 181 hypothetical open reading frames (ORFs). Additionally, definition based on ascovirus repeated ORFs (aros) is proposed; whereby the 29 aros from all sequenced Ascoviridae genomes are divided into six distinct groups. The topological relationship among the isolates of Heliothis virescens ascovirus 3a is (HvAV-3f, {HvAV-3h, [HvAV-3e, (HvAV-3g, HvAV-3i)]}) with every clade well supported by a Bayesian posterior probability of 1.00 and a Bootstrap value of 100%.


Assuntos
Ascoviridae/genética , Ascoviridae/isolamento & purificação , Fases de Leitura Aberta , Spodoptera/virologia , Animais , Ascoviridae/classificação , Genoma Viral , Genômica , Hemolinfa/virologia , Larva/virologia , Filogenia
14.
PLoS One ; 13(2): e0192279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29390020

RESUMO

Oxyplax ochracea (Moore) is a pest that causes severe damage to a wide range of crops, forests and fruit trees. The complete genome sequence of Oxyplax ochracea nucleopolyhedrovirus (OxocNPV) was determined using a Roche 454 pyrosequencing system. OxocNPV has a double-stranded DNA (dsDNA) genome of 113,971 bp with a G+C content of 31.1%. One hundred and twenty-four putative open reading frames (ORFs) encoding proteins of >50 amino acids in length and with minimal overlapping were predicted, which covered 92% of the whole genome. Six baculoviral typical homologous regions (hrs) were identified. Phylogenetic analysis and gene parity plot analysis showed that OxocNPV belongs to clade "a" of Group I alphabaculoviruses, and it seems to be close to the most recent common ancestor of Group I alphabaculoviruses. Three unique ORFs (with no homologs in the National Center for Biotechnology Information database) were identified. Interestingly, OxocNPV lacks three auxiliary genes (lef7, ie-2 and pcna) related to viral DNA replication and RNA transcription. In addition, OxocNPV has significantly different sequences for several genes (including ie1 and odv-e66) in comparison with those of other baculoviruses. However, three dimensional structure prediction showed that OxocNPV ODV-E66 contain the conserved catalytic residues, implying that it might possess polysaccharide lyase activity as AcMNPV ODV-E66. All these unique features suggest that OxocNPV represents a novel species of the Group I alphabaculovirus lineage.


Assuntos
Baculoviridae/genética , Genoma Viral , Lepidópteros/virologia , Animais , Baculoviridae/isolamento & purificação , Sequência de Bases , Replicação do DNA , Fases de Leitura Aberta , RNA Viral/genética , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
15.
Virol Sin ; 32(2): 147-154, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28382574

RESUMO

No ascovirus isolated from China has been sequenced so far. Therefore, in this study, we aimed to sequence the genome of Heliothis virescens ascovirus 3h (HvAV-3h) using the 454 pyrosequencing technology. The genome was found to be 190,519-bp long with a G+C content of 45.5%. We also found that it encodes 185 hypothetical open reading frames (ORFs) along with at least 50 amino acids, including 181 ORFs found in other ascoviruses and 4 unique ORFs. Gene-parity plots and phylogenetic analysis revealed a close relationship between HvAV-3h and three other HvAV-3a strains and a distant relationship with Spodoptera frugiperda ascovirus 1a (SfAV-1a), Trichoplusia ni ascovirus 6a (TnAV-6a), and Diadromus pulchellus ascovirus 4a (DpAV-4a). Among the 185 potential genes encoded by the genome, 44 core genes were found in all the sequenced ascoviruses. In addition, 25 genes were found to be conserved in all ascoviruses except DpAV-4a. In the HvAV-3h genome, 24 baculovirus repeat ORFs (bros) were present, and the typical homologous repeat regions (hrs) were absent. This study supplies information important for understanding the conservation and functions of ascovirus genes as well as the variety of ascoviral genomes.


Assuntos
Ascoviridae/genética , Ascoviridae/isolamento & purificação , Lepidópteros/virologia , Animais , Composição de Bases , China , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Genoma Viral , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
16.
ACS Synth Biol ; 6(7): 1393-1402, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28383905

RESUMO

Synthetic viruses provide a powerful platform to delve deeper into the nature and function of viruses as well as to engineer viruses with novel properties. So far, most synthetic viruses have been RNA viruses (<30 kb) and small DNA viruses, such as bacteriophage phiX174. Baculoviruses contain a large circular dsDNA genome of 80-180 kb and have been used as biocontrol agents and protein expression vectors. Here, we report on the first synthesis of a baculovirus based on the type species Autographa californica nucleopolyhedrovirus, AcMNPV, by a combination of PCR and transformation-associated recombination in yeast. The synthetic genome, designated AcMNPV-WIV-Syn1, is 145 299 bp comprising the complete genome of AcMNPV except for the hr4a locus that was replaced with an ∼11.5 kb cassette of bacterial and yeast artificial chromosomal elements and an egfp gene. Sf9 insect cells were transfected with AcMNPV-WIV-Syn1 DNA and progeny virus was examined by electron microscopy, and assayed in one-step growth curves and oral infectivity. The results conclusively showed that the rescued virus AcMNPV-WIV-Syn1 had structural and biological properties comparable to the parental virus. We validated a proof of concept that a bona fide baculovirus can be synthesized. The new platform allows manipulation at any or multiple loci and will facilitate future studies such as identifying the minimal baculovirus genome and construction of better expression vectors. This is the largest DNA virus synthesized so far, and its success is likely to be the impetus to stimulate the fields of other large DNA viruses such as herpesviruses and poxviruses.


Assuntos
Nucleopoliedrovírus/genética , Biologia Sintética/métodos , Animais , Cromossomos Artificiais/genética , Vírus de DNA/genética , DNA Viral/genética , Reação em Cadeia da Polimerase , Células Sf9
17.
PLoS One ; 11(7): e0159862, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27454435

RESUMO

Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs) with the host's midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 and PIF3 by using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) backbone. The four pifs of HearNPV were replaced by their counterparts from a group I Autographa californica multiple nucleopolyhedrovirus (AcMNPV) or a group II Spodoptera litura nucleopolyhedrovirus (SpltNPV). Transfection and infection assays showed that all the recombinant viruses were able to produce infectious budded viruses (BVs) and were lethal to H. armigera larvae via intrahaemocoelic injection. However, feeding experiments using very high concentration of occlusion bodies demonstrated that all the recombinant viruses completely lost oral infectivity except SpltNPV pif3 substituted pif3-null HearNPV (vHaBacΔpif3-Sppif3-ph). Furthermore, bioassay result showed that the median lethal concentration (LC50) value of vHaBacΔpif3-Sppif3-ph was 23-fold higher than that of the control virus vHaBacΔpif3-Hapif3-ph, indicating that SpltNPV pif3 can only partially substitute the function of HearNPV pif3. These results suggested that most of PIFs tested have strict host specificities, which may account, at least in part, for the limited host ranges of baculoviruses.


Assuntos
Baculoviridae/fisiologia , Especificidade de Hospedeiro , Insetos/virologia , Fatores de Virulência , Animais , Baculoviridae/ultraestrutura , Linhagem Celular , Regulação Viral da Expressão Gênica , Larva/virologia , Transporte Proteico , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética
18.
PLoS One ; 11(5): e0155134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27166956

RESUMO

The genome sequence of Catopsilia pomona nucleopolyhedrovirus (CapoNPV) was determined by the Roche 454 sequencing system. The genome consisted of 128,058 bp and had an overall G+C content of 40%. There were 130 hypothetical open reading frames (ORFs) potentially encoding proteins of more than 50 amino acids and covering 92% of the genome. Among all the hypothetical ORFs, 37 baculovirus core genes, 23 lepidopteran baculovirus conserved genes and 10 genes conserved in Group I alphabaculoviruses were identified. In addition, the genome included regions of 8 typical baculoviral homologous repeat sequences (hrs). Phylogenic analysis showed that CapoNPV was in a distinct branch of clade "a" in Group I alphabaculoviruses. Gene parity plot analysis and overall similarity of ORFs indicated that CapoNPV is more closely related to the Group I alphabaculoviruses than to other baculoviruses. Interesting, CapoNPV lacks the genes encoding the fibroblast growth factor (fgf) and ac30, which are conserved in most lepidopteran and Group I baculoviruses, respectively. Sequence analysis of the F-like protein of CapoNPV showed that some amino acids were inserted into the fusion peptide region and the pre-transmembrane region of the protein. All these unique features imply that CapoNPV represents a member of a new baculovirus species.


Assuntos
Baculoviridae/genética , Genoma Viral , Nucleopoliedrovírus/genética , Análise de Sequência de DNA , Sequência de Aminoácidos , Sequência de Bases , DNA Circular/genética , Genes Virais , Fases de Leitura Aberta/genética , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/genética
20.
PLoS One ; 11(4): e0153365, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27058368

RESUMO

Mamestra brassicae nucleopolyhedrovirus (MabrNPV) has a wide host range replication in more than one insect species. In this study, a sequenced MabrNPV strain, MabrNPV-CTa, was used to perform proteomic analysis of both BVs and ODVs derived from two infected hosts: Helicoverpa armigera and Spodoptera exigua. A total of 82 and 39 viral proteins were identified in ODVs and BVs, respectively. And totally, 23 and 76 host proteins were identified as virion-associated with ODVs and BVs, respectively. The host proteins incorporated into the virus particles were mainly involved in cytoskeleton, signaling, vesicle trafficking, chaperone and metabolic systems. Some host proteins, such as actin, cyclophilin A and heat shock protein 70 would be important for viral replication. Several host proteins involved in immune response were also identified in BV, and a C-type lectin protein was firstly found to be associated with BV and its family members have been demonstrated to be involved in entry process of other viruses. This study facilitated the annotation of baculovirus genome, and would help us to understand baculovirus virion structure. Furthermore, the identification of host proteins associated with virions produced in vivo would facilitate investigations on the involvement of intriguing host proteins in virus replication.


Assuntos
Lepidópteros/virologia , Mariposas/virologia , Nucleopoliedrovírus/metabolismo , Proteoma/metabolismo , Spodoptera/virologia , Vírion/metabolismo , Animais , Larva/virologia , Lectinas Tipo C/metabolismo , Proteômica/métodos , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA