Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948047

RESUMO

The actin cytoskeleton is crucial for plant morphogenesis, and organization of actin filaments (AF) is dynamically regulated by actin-binding proteins. However, the roles of actin-binding proteins, particularly type II formins, in this process remain poorly understood in plants. Here, we report that a type II formin in rice, Oryza sativa formin homolog 3 (OsFH3), acts as a major player to modulate AF dynamics and contributes to rice morphogenesis. osfh3 mutants were semi-dwarf with reduced size of seeds and unchanged responses to light or gravity compared with mutants of osfh5, another type II formin in rice. osfh3 osfh5 mutants were dwarf with more severe developmental defectiveness. Recombinant OsFH3 could nucleate actin, promote AF bundling, and cap the barbed end of AF to prevent elongation and depolymerization, but in the absence of profilin, OsFH3 could inhibit AF elongation. Different from other reported type II formins, OsFH3 could bind, but not bundle, microtubules directly. Furthermore, its N-terminal phosphatase and tensin homolog domain played a key role in modulating OsFH3 localization at intersections of AF and punctate structures of microtubules, which differed from other reported plant formins. Our results, thus, provide insights into the biological function of type II formins in modulating plant morphology by acting on AF dynamics.


Assuntos
Forminas/genética , Forminas/metabolismo , Oryza/crescimento & desenvolvimento , Citoesqueleto de Actina/metabolismo , Forminas/química , Morfogênese , Mutação , Tamanho do Órgão , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
2.
New Phytol ; 231(4): 1612-1629, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031889

RESUMO

Photoperiod-dependent male fertility is a critical enabler of modern hybrid breeding. A MYB transcription factor, CSA, is a key regulator of sugar partitioning in rice anthers, disruption of which causes photoperiod-sensitive male sterility. However, little is known about the molecular mechanisms governing plant fertility in response to photoperiod. Here, we have obtained another rice photoperiod-sensitive male sterile mutant, csa2, which exhibits semi-sterility under long-day (LD) conditions, with normal fertility under short-day (SD) conditions. CSA2 specifically expressed in anthers, and here is shown to be indispensable for sugar partitioning to anthers under LD conditions. The CSA2 protein can restore the fertility of csa mutants under SD conditions when expressed in a CSA-specific pattern, indicating that the two proteins share common downstream regulatory targets. Transcriptomic analyses also reveal discrete regulatory targets in anthers. Furthermore, the regulatory role of CSA2 in sugar transport was influenced by the photoperiod conditions during floral initiation, not simply during anther development. Collectively, we propose that rice evolved at least two MYB proteins, CSA2 and CSA, that regulate sugar transport in anthers under LD and SD conditions, respectively. This finding provides insight into the molecular mechanisms that regulate male fertility in response to photoperiod.


Assuntos
Oryza , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Fotoperíodo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares , Fatores de Transcrição/genética
3.
Materials (Basel) ; 13(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877997

RESUMO

This paper reports on the preparation, characterization, and catalytic properties of the Pd@UIO-66 for toluene oxidation. The samples are prepared by the double-solvent method to form catalysts with large specific surface area, highly dispersed Pd0 (Elemental palladium) and abundant adsorbed oxygen, which are characterized by X-ray Photoelectron Spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and Transmission Electron Microscopy (TEM). The results show that as the Pd content increases, the adsorbed oxygen content further increases, but at the same time Pd0 will agglomerate and lose some active sites, which will affect its catalytic performance. While 0.2%Pd@UIO-66 has the highest concentration of Pd0, the result shows it has the best catalytic activity and the T90 temperature is 210 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA