Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Small ; : e2402938, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113331

RESUMO

With the rapid development of electronic industry, it's pressing to develop multifunctional electromagnetic interference (EMI) shielding materials to ensure the stable operation of electronic devices. Herein, multilayered flexible PEG@PAN/MXene (Ti3C2Tx)/PVDF@SiO2 (PMF) composite film has been constructed from the level of microstructure design via coaxial electrospinning, coating spraying, and uniaxial electrospinning strategies. Benefiting from the effective encapsulation for PEG and high conductivity of MXene coating, PEG@PAN/MXene composite film with MXene coating loading density of 0.70 mg cm-2 exhibits high thermal energy storage density of 120.77 J g-1 and great EMI shielding performance (EMI SE of 34.409 dB and SSE of 49.086 dB cm3 g-1) in X-band (8-12 GHz). Therefore, this advanced composite film can not only help electronic devices prevent the influence of electromagnetic pollution in the X-band but also play an important role in electronic device thermal management. Additionally, the deposition of nano PVDF@SiO2 fibers (289 ± 128 nm) endowed the PMF composite film with great hydrophobic properties (water contact angle of 126.5°) to ensure the stable working of hydrophilic MXene coating, thereby breaks the limitation of humid application environments. The finding paves a new way for the development of novel multifunctional EMI shielding composite films for electronic devices.

2.
Cell Death Differ ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174646

RESUMO

Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.

3.
Langmuir ; 40(32): 16690-16712, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39078042

RESUMO

All-solid-state sodium batteries (AS3B) emerged as a strong contender in the global electrochemical energy storage market as a replacement for current lithium-ion batteries (LIB) owing to their high abundance, low cost, high safety, high energy density, and long calendar life. Inorganic electrolytes (IEs) are highly preferred over the conventional liquid and solid polymer electrolytes for sodium-ion batteries (SIBs) due to their high ionic conductivity (∼10-2-10-4 S cm-1), wide potential window (∼5 V), and overall better battery performances. This review discusses the bird's eye view of the recent progress in inorganic electrolytes such as Na-ß"-alumina, NASICON, sulfides, antipervoskites, borohydride-type electrolytes, etc. for AS3Bs. Current state-of-the-art inorganic electrolytes in correlation with their ionic conduction mechanism present challenges and interfacial characteristics that have been critically reviewed in this review. The current challenges associated with the present battery configuration are overlooked, and also the chemical and electrochemical stabilities are emphasized. The substantial solution based on ongoing electrolyte development and promising modification strategies are also suggested.

4.
J Colloid Interface Sci ; 674: 353-360, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941929

RESUMO

Electrochemical nitrate reduction reaction (NO3RR) offers a cost-effective and environmentally friendly method to simultaneously yield valuable NH3and alleviate NO3-pollution under mild operating conditions.However, this complicated eight-electron reaction suffers from low selectivity and Faradaic efficiency, which highlight the importance of developing efficient catalysts, but still a critical challenge. Here, a theoretical screening is performed on transition metal-tetragonal carbon nitride (TM@T-C2N) as active and selective electrocatalysts for NO3RR, where detailed reaction mechanisms and activity origins are explored. In addition, five-step screening criteria and volcano plots enable fast prescreening among numerous candidates.We identify that V@T-C2N and Cr@T-C2N are promising candidates with low overpotentials and high selectivity and stability. In particular, a significant negative correlation between the adsorption strength ofnitrate and the Gibbs free energy for the last proton-electron coupling step (*NH2→*NH3) was existed, which is considerably advantaged to track the activity trend and reveal the origin of activity. This work provides theoretical insights into the rational design of TM-N4/C catalysts for NO3RR andpaves a valuable electrochemical screening framework for other multi-step reactions.

5.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928360

RESUMO

Mineral oils and synthetic and natural esters are the predominant insulating liquids in electrical equipment. Structure-activity relationship models to predict the key properties of pure insulating liquids, including pulse breakdown strengths, AC breakdown voltages, dielectric constants, flash points, and kinematic viscosities, have been proposed for the first time. Dependence of the specific properties on the molecular structures has been illustrated quantitatively in terms of surface area, statistical total variance, and average deviation of positive and negative electrostatic potentials, as augmented by molecular weight, volume, and ovality. Moreover, the individual contribution of the functional groups to viscosity has been revealed by an additive approach. The predicted properties are in good agreement with the experimental data. The present theoretical work provides new insights on the development of novel dielectric fluids.


Assuntos
Eletricidade Estática , Viscosidade , Relação Estrutura-Atividade
6.
Sci Rep ; 14(1): 12767, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834658

RESUMO

Both irradiation and dislocations have been proposed as routes to rationally manipulate spatial distribution and micromorphology of precipitate. An interesting effect emerges in Fe-10at.%Cu-3at.%Mn-1.5at.%Ni-1.5at.%Al alloy due to the synergistic-competitive roles of dislocation loop and irradiation. Base on cascade mixing, vacancy-interstitial atoms and dislocation stress field model, we examine nucleation and growth dynamics of Cu-rich precipitates, where both dislocation loop and irradiation act in conjunction. Analytical treatments identify regimes, where the distribution of elements and point defects due to irradiation and dislocations are specific to the Cu-rich precipitates. Simulation results reveal that density, size and distribution of Cu-rich precipitates are a manifestation of the competing effects of the dislocation loop and the irradiation rate. More specifically, the dislocation loop preferentially assists the formation of precipitates and new dislocations at lower irradiation rates. Only the irradiation induces the formation of Cu-rich precipitates with the irradiation rate continues to increase. Equipped with molecular dynamics, where reproduces major interaction features of the solutes with point defects under displacement cascade, can verify multi-component morphologies of Cu-rich precipitates. This modeling framework provides an avenue to explore the role of dislocation loop and irradiation on the microstructural evolution of Cu-rich precipitates.

7.
Nanomicro Lett ; 16(1): 195, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743205

RESUMO

A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.

8.
Small ; : e2312141, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801318

RESUMO

Reactive oxygen species (ROS)-mediated emerging treatments exhibit unique advantages in cancer therapy in recent years. While the efficacy of ROS-involved tumor therapy is greatly restricted by complex tumor microenvironment (TME). Herein, a dual-metal CaO2@CDs-Fe (CCF) nanosphere, with TME response and regulation capabilities, are proposed to improve ROS lethal power by a multiple cascade synergistic therapeutic strategy with domino effect. In response to weak acidic TME, CCF will decompose, accompanied with intracellular Ca2+ upregulated and abundant H2O2 and O2 produced to reverse antitherapeutic TME. Then the exposed CF cores can act as both Fenton agent and sonosensitizer to generate excessive ROS in the regulated TME for enhanced synergistic CDT/SDT. In combination with calcium overloading, the augmented ROS induced oxidative stress will cause more severe mitochondrial damage and cellular apoptosis. Furthermore, CCF can also reduce GPX4 expression and enlarge the lipid peroxidation, causing ferroptosis and apoptosis in parallel. These signals of damage will finally initiate damage-associated molecular patterns to activate immune response and to realize excellent antitumor effect. This outstanding domino ROS/calcium loading synergistic effect endows CCF with excellent anticancer effect to efficiently eliminate tumor by apoptosis/ferroptosis/ICD both in vitro and in vivo.

9.
ACS Nano ; 18(22): 14583-14594, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38722840

RESUMO

Direct photosynthesis of hydrogen peroxide (H2O2) from water and oxygen represents an intriguing alternative to the current indirect process involving the reduction and oxidation of quinones. However, limited light utilization and sluggish charge transfer largely impede overall photocatalytic efficiency. Herein, we present a heavily doped carbon nitride (CNKLi) nanocrystal for efficient and selective photoproduction of H2O2 via a two-electron oxygen reduction reaction (ORR) pathway. CNKLi induces metal-to-ligand charge transfer (MLCT) and electron trapping, which broadens the light absorption to the visible-near-infrared (vis-NIR) spectrum and prolongs the photoelectron lifetime to the microsecond time scale with an exceptional charge diffusion length of ∼1200 nm. Near-unit photoutilization with an apparent quantum yield (AQY) of 100% for H2O2 generation is achieved below 420 nm. Impressively, CNKLi exhibits an appreciable AQY of 16% at 700 nm, which reaches the absorption capacity (∼16%), thus suggesting a near-unit photon utilization <700 nm. In situ characterization and theoretical calculations reveal the facilitated charge transfer from K+ to the heptazine ring skeleton. These findings provide an approach to improve the photosynthetic efficiency of direct H2O2 preparation in the vis-NIR region and expand applications for driving kinetically slow and technologically desirable oxidations or high-value chemical generation.

10.
J Colloid Interface Sci ; 667: 679-687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38670011

RESUMO

The development ofhighly efficient oxygen evolution reaction (OER) catalysts based on more cost-effective and earth-abundant elements is of great significance and still faces a huge challenge. In this work, a series of transition metal (TM)embedding a newly-defined monolayer carbon nitride phase is theoretically profiled and constructed as a catalytic platform for OER studies. Typically, a four-step screening strategy was proposed to rapidly identified high performance candidates and the coordination structure and catalytic performance relationship was thoroughly analyzed. Moreover, the eliminating criterion was established to condenses valid range based on the Gibbs free energy of OH*. Our results reveal that the as-constructed 2FeCN/P exhibits superior activity toward OER with an ultralow overpotential of 0.25 V, at the same time, the established 3FeCN/S configuration performed well as abifunctional OER/ORR electrocatalysis with extremely low overpotential ηOER/ηORR of 0.26/0.48 V. Overall, this work provides an effective framework for screening advanced OER catalysts, which can also be extended to other complex multistep catalytic reactions.

11.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473781

RESUMO

The Tripterospermum, comprising 34 species, is a genus of Gentianaceae. Members of Tripterospermum are mostly perennial, entwined herbs with high medicinal value and rich in iridoids, xanthones, flavonoids, and triterpenes. However, our inadequate understanding of the differences in the plastid genome sequences of Tripterospermum species has severely hindered the study of their evolution and phylogeny. Therefore, we first analyzed the 86 Gentianae plastid genomes to explore the phylogenetic relationships within the Gentianae subfamily where Tripterospermum is located. Then, we analyzed six plastid genomes of Tripterospermum, including two newly sequenced plastid genomes and four previously published plastid genomes, to explore the plastid genomes' evolution and phylogenetic relationships in the genus Tripterospermum. The Tripterospermum plastomes have a quadripartite structure and are between 150,929 and 151,350 bp in size. The plastomes of Tripterospermum encoding 134 genes were detected, including 86 protein-coding genes (CDS), 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and three pseudogenes (infA, rps19, and ycf1). The result of the comparison shows that the Tripterospermum plastomes are very conserved, with the total plastome GC content ranging from 37.70% to 37.79%. In repeat sequence analysis, the number of single nucleotide repeats (A/T) varies among the six Tripterospermum species, and the identified main long repeat types are forward and palindromic repeats. The degree of conservation is higher at the SC/IR boundary. The regions with the highest divergence in the CDS and the intergenic region (IGS) are psaI and rrn4.5-rrn5, respectively. The average pi of the CDS and the IGS are only 0.071% and 0.232%, respectively, indicating that the Tripterospermum plastomes are highly conserved. Phylogenetic analysis indicated that Gentianinae is divided into two clades, with Tripterospermum as a sister to Sinogeniana. Phylogenetic trees based on CDS and CDS + IGS combined matrices have strong support in Tripterospermum. These findings contribute to the elucidation of the plastid genome evolution of Tripterospermum and provide a foundation for further exploration and resource utilization within this genus.


Assuntos
Genomas de Plastídeos , Gentianaceae , Filogenia , Evolução Molecular
12.
ACS Nano ; 18(11): 7769-7795, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38420949

RESUMO

Tumor-associated macrophages (TAMs) play pivotal roles in tumor development. As primary contents of tumor environment (TME), TAMs secrete inflammation-related substances to regulate tumoral occurrence and development. There are two kinds of TAMs: the tumoricidal M1-like TAMs and protumoral M2-like TAMs. Reprogramming TAMs from immunosuppressive M2 to immunocompetent M1 phenotype is considered a feasible way to improve immunotherapeutic efficiency. Notably, nanomaterials show great potential for biomedical fields due to their controllable structures and properties. There are many types of nanomaterials that exhibit great regulatory activities for TAMs' reprogramming. In this review, the recent progress of nanomaterials-involved TAMs' reprogramming is comprehensively discussed. The various nanomaterials for TAMs' reprogramming and the reprogramming strategies are summarized and introduced. Additionally, the challenges and perspectives of TAMs' reprogramming for efficient therapy are discussed, aiming to provide inspiration for TAMs' regulator design and promote the development of TAMs-mediated immunotherapy.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Macrófagos Associados a Tumor , Imunoterapia , Imunossupressores , Inflamação , Nanoestruturas/uso terapêutico , Microambiente Tumoral , Neoplasias/terapia
13.
J Phys Chem A ; 128(8): 1511-1522, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38362878

RESUMO

Tetrafluoropropyne (C3F4) is a potential dielectric in various electrical insulating equipment to replace the most potent industrial greenhouse gas, sulfur hexafluoride. Atmospheric oxidation of C3F4 by OH radicals in the presence of molecular O2 has been investigated theoretically in order to clarify the lifetime and degradation products at mechanistic and kinetic aspects. Energetic minimum-energy pathways for the C3F4 + OH/O2 reactions were calculated in detail using various theoretical methods including density functional M06-2X and CCSD for geometries, CBS-QB3, CCSD(T), and multireference RS2 with extrapolation to the complete basis-set limit for energies. It has been demonstrated that the C3F4 + OH reaction takes place via the bifurcated C-O addition/elimination routes leading to CF3C(OH)═CF and CF3C═C(OH)F radical adducts, where the latter is more preferable in view of the difference in barrier heights (1.3 vs 0.3 kcal/mol), followed by H-migration, HF-elimination, and C-C and C-F bond fission. The atmospheric lifetime of C3F4 was estimated to be about 13 days, which is indicative of a very short-lived substance in the atmosphere. Further degradation of the energy-rich C3F4OH* intermediates by O2 takes place spontaneously in view of the successive barrier-free and highly exothermic pathways, producing a variety of fluorinated acids, anhydrides, biacetyls, and regenerating OH radicals. For comparison, the reactions of C3H4, CF3CCH, and CH3CCF with OH radicals were examined to clarify the F-substitution effect. It is revealed that the reactivity of fluoropropynes could be either reduced by CF3 or enhanced by atomic F attached to the acetylenic carbon. The present work provides a fundamental understanding of the reactions of fluoroalkynes with OH/O2. The use of C3F4 as a promising eco-friendly gaseous dielectric alternative to SF6 has been supported.

14.
Clin Chim Acta ; 555: 117815, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309556

RESUMO

BACKGROUND AND AIMS: Chronic kidney disease (CKD) causes low quality of life and alarming morbidity and mortality. The crucial to retard CKD progression is to diagnose early for timely treatment. IgA nephropathy (IgAN) is a typical CKD and the most common glomerulonephritis. Both CKD and IgAN lack accurate and sensitive blood biomarkers for early diagnosis. Here we report the potential of plasma biomarkers for early diagnosis of CKD and IgAN. MATERIALS AND METHODS: Plasma levels of metabolites derived from tryptophan were quantified with an LC-MS/MS-based metabolomics for two cohorts. Based on the predictive probability of each metabolite, multivariate models including logistic regression and random forest were used to establish the early diagnostic biomarkers for CKD and IgAN. RESULTS: The plasma melatonin diagnosed early CKD (stages Ⅰ-Ⅱ) with an accuracy exceeding 95%, and a panel of melatonin and tryptophan achieved a remarkable 100% accuracy in diagnosing early CKD. Furthermore, indole-3-lactic acid had an excellent ability to distinguish IgAN among CKD patients. Based on the CKD screening and IgAN diagnosis primarily contributed by melatonin and indole-3-lactic acid, early IgAN could be diagnosed with an accuracy of over 85%. CONCLUSIONS: This study provides promising plasma biomarkers for early diagnosis of CKD and IgAN.


Assuntos
Glomerulonefrite por IGA , Melatonina , Insuficiência Renal Crônica , Humanos , Glomerulonefrite por IGA/diagnóstico , Estudos Transversais , Estudos Retrospectivos , Cromatografia Líquida , Qualidade de Vida , Triptofano , Espectrometria de Massas em Tandem , Insuficiência Renal Crônica/diagnóstico , Biomarcadores , Diagnóstico Precoce
15.
Int J Biol Macromol ; 258(Pt 2): 129120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171436

RESUMO

Ultrasound (US)-mediated sonodynamic therapy (SDT) has received extensive attention in pathogen elimination for non-invasiveness and high spatial and temporal accuracy. Considering that hydrogel can provide a healing-friendly environment for wounds, in this work, hybrid hydrogels are constructed by embedding Ag doped TiO2 nanoparticles in chitosan-polyvinyl alcohol hydrogels for enhanced sonodynamic antibacterial therapy. With metal silver doped, TiO2 nanoparticles sonosensitivity is improved to generate more reactive oxygen species (ROS), which endows hybrid hydrogels with high-efficient antibacterial properties. In vivo results show that hybrid hydrogel dressing can prevent infection and promote wound closure within 2 days. The healing ratio excess 95 % with no pus produced at the end of treatment. The therapeutic mechanism was identified that heterojunction formed in Ag doped TiO2 facilitates the separation of charge carriers under US irradiation, leading to elevating ROS generation. The generated ROS promote hybrid hydrogels sonodynamic antibacterial therapeutic efficacy to thoroughly eliminate pathogen via disrupting bacterial cell membrane integrity, decreasing membrane fluidity and increasing membrane permeability. Besides, biofilm formation could be effectively inhibited. This work developed a hybrid hydrogel with amplified SDT effect for wound healing, which is expected to provide inspiration of hybrid hydrogels design and Ti-based nanomaterials sonosensitivity enhancement.


Assuntos
Quitosana , Infecções Estafilocócicas , Humanos , Quitosana/farmacologia , Staphylococcus aureus , Álcool de Polivinil/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Titânio/farmacologia , Antibacterianos/farmacologia , Bandagens , Hidrogéis/farmacologia , Infecções Estafilocócicas/tratamento farmacológico
16.
Int J Biol Macromol ; 257(Pt 1): 128588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048922

RESUMO

This study focuses on the characterization and regulation of glycolipid metabolism of polysaccharides derived from biomass of Phyllostachys nigra (Lodd. ex Lindl.) root (PNr). The extracts from dilute hydrochloric acid, hot water, and 2 % sodium hydroxide solution were characterized through molecular weight, gel permeation chromatography, monosaccharides, Fourier transform infrared, and nuclear magnetic resonance spectroscopy analyses. Polysaccharide from alkali extraction and molecular sieve purification (named as: PNS2A) exhibited optimal inhibitory of 3T3-L1 cellular differentiation and lowered insulin resistance. The PNS2A is made of a hemicellulose-like main chain of →4)-ß-D-Xylp-(1→ that was connected by branches of 4-O-Me-α-GlcAp-(1→, T-α-D-Galp-(1→, T-α-L-Araf-(1→, →2)-α-L-Araf-(1→, as well as ß-D-Glcp-(1→4-ß-D-Glcp-(1→ fragments. Oral delivery of PNS2A in diabetes mice brought down blood glucose and cholesterol levels and regulated glucose and lipid metabolism. PNS2A alleviated diabetes symptoms and body weight and protected liver and kidney function in model animals by altering the gut microbiome. Polysaccharides can be a new approach to develop bamboo resources.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Camundongos , Animais , Polissacarídeos/química , Monossacarídeos/análise , Glucose/análise , Poaceae
17.
Life Sci ; 336: 122302, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016577

RESUMO

AIMS: Deoxynivalenol (DON), namely vomitoxin, is one of the most prevalent fungal toxins in cereal crops worldwide. However, the underlying toxic mechanisms of DON remain largely unknown. MAIN METHODS: DON exposure-caused changes in the murine plasma metabolome and gut microbiome were investigated by an LC-MS/MS-based nontargeted metabolomics approach and sequencing of 16S rRNA in fecal samples, respectively. Cellular models were then used to validate the findings from the metabolomics study. KEY FINDINGS: DON exposure increased intestinal barrier permeability evidenced by its-mediated decrease in colonic Claudin 5 and E-cadherin, as well as increases in colonic Ifn-γ, Cxcl9, Cxcl10, and Cxcr3. Furthermore, DON exposure resulted in a significant increase in murine plasma levels of deoxycholic acid (DCA). Also, DON exposure led to gut microbiota dysbiosis, which was associated with DON exposure-caused increase in plasma DCA. In addition, we found not only DON but also DCA dose-dependently caused a significant increase in the levels of IFN-γ, CXCL9, CXCL10, and/or CXCR3, as well as a significant decrease in the expression levels of Claudin 5 and/or E-cadherin in the human colonic epithelial cells (NCM460). SIGNIFICANCE: DON-mediated increase in DCA contributes to DON-caused intestinal injury. DCA may be a potential therapeutic target for DON enterotoxicity.


Assuntos
Enteropatias , Espectrometria de Massas em Tandem , Humanos , Camundongos , Animais , Cromatografia Líquida , RNA Ribossômico 16S , Claudina-5 , Caderinas , Ácido Desoxicólico/toxicidade
18.
J Biomol Struct Dyn ; 42(4): 2153-2161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37129289

RESUMO

As the downstream component of the mitogen-activated protein kinases (MAPK) pathway, the extracellular signal-regulated kinase (ERK) is responsible for phosphorylating a broad range of substrates in cell proliferation, differentiation, and survival. Direct targeting the ERK proteins by the piperidinopyrimidine urea-based inhibitors has been demonstrated to be an effective way to block the MAPK signaling pathway in inhibiting tumor growth. In order to discover better inhibitors, a computer-aided drug design (CADD) approach was employed to reveal the pharmacological characteristics and mechanisms of action. The pharmacophore model was generated on the basis of the compounds with eight features, i.e., four hydrogen bond acceptor atoms, one hydrogen bond donor atom, and three hydrophobic centers. A total of 14 hit compounds were obtained through virtual screening. Two potential inhibitors, namely VS01 and VS02, have been identified by molecular docking and molecular dynamics simulations. Both compounds are capable of attaching to the ERK pocket precisely. The binding free energies of VS01 and VS02 are about 15 kJ/mol and 4 kJ/mol stronger than that of the clinic Ulixertinib because of the characteristic hydrogen bonding, electrostatic, and hydrophilic interactions. The present theoretical investigations shed new light on the rational design of the potential ERK inhibitors to stimulate further experimental tests.Communicated by Ramaswamy H. Sarma.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Farmacóforo , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade
19.
Chem Rec ; 23(12): e202300317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054611

RESUMO

Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2 RR. Finally, the challenges and opportunities in this field are discussed.

20.
Nanomicro Lett ; 16(1): 36, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019340

RESUMO

MXene, a transition metal carbide/nitride, has been prominent as an ideal electrochemical active material for supercapacitors. However, the low MXene load limits its practical applications. As environmental concerns and sustainable development become more widely recognized, it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton. The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization. The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles, resulting in more efficient ion exchange between the electrolyte and electrodes. Furthermore, the carbonization process removed the specific adverse groups in MXenes, further improving the specific capacitance, energy density, power density and electrical conductivity of supercapacitors. The electrodes achieve a maximum specific capacitance of 1748.5 mF cm-2 and demonstrate remarkable cycling stability maintaining more than 94% after 15,000 galvanostatic charge/discharge cycles. Besides, the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm-2, energy density of 80.2 µWh cm-2 and power density of 3 mW cm-2, respectively. The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches, laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA