Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29361, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628726

RESUMO

Inflammation affects several aspects of lung cancer progression including cell proliferation, metastasis, apoptosis, angiogenesis, and drug resistance. Baicalin, an active component of Scutellaria baicalensis Georgi, exhibits anticancer activity in various cancers. However, the effects of baicalin on lung cancer and the underlying molecular mechanisms remain largely unknown. This study is to explore the effect and mechanism of baicalin on lung cancer cell A549 and urethane-induced mouse lung cancer. A cell viability assay, colony formation assay, wound healing assay, acridine orange/ethidium bromide (AO/EB) staining assay, Western blot assay, urethane-induced mouse lung cancer model, hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and ELISA assay were performed to investigate the effects of baicalin on lung cancer in vitro and in vivo. Network pharmacology analysis, molecular docking, gene silencing assays, and LPS-induced inflammation model were utilized to explore the molecular mechanisms underlying the effect of baicalin on lung cancer. Baicalin showed significant anti-proliferative, anti-migratory, anti-inflammatory and pro-apoptotic effects in vitro; it also inhibited the progression of urethane-induced mouse lung cancer in vivo. Mechanistically, suppressor of cytokine signaling 1 (SOCS1) was the key determinant for baicalin-induced inhibition of lung cancer. Baicalin increased SOCS1 expression to inactivate the NF-κB/STAT3 pathway to inhibit lung cancer in vitro and in vivo. Taken together, baicalin reduces inflammation to inhibit lung cancer via targeting SOCS1/NF-κB/STAT3 axis, providing a prospective compound and novel target for lung cancer treatment.

2.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500358

RESUMO

This study aims to observe the differentiating effect of shikonin on Wilms' tumor 1 (WT1)-positive HL-60 cells and investigate the fate of the differentiated leukemia cells. WT1 overexpression unaffected cell viability but promoted resistance to H2O2-induced DNA injury and cell apoptosis. The binding of shikonin to the WT1 protein was confirmed by molecular docking and drug affinity reaction target stability (DARTS). Shikonin at the non-cytotoxic concentration could decrease the WT1 protein and simultaneously reduced the CD34 protein and increased the CD11b protein in a dose-dependent manner in normal HL-60 cells but not in WT1-overexpressed HL-60 cells. Shikonin unaffected HL-60 cell viability in 48 h. However, it lasted for 10 days; could attenuate cell proliferation, mitochondrial membrane potential (MMP), and self-renewal; prevent the cell cycle; promote cell apoptosis. In a mouse leukemia model, shikonin could decrease the WT1 protein to prevent leukemia development in a dose-dependent manner. In this study, we also confirmed preliminarily the protein-protein interactions between WT1 and CD34 in molecular docking and CO-IP assay. Our results suggest that: 1. shikonin can down-regulate the WT1 protein level for leukemia differentiation therapy, and 2. the interaction between WT1 and CD34 proteins may be responsible for granulocyte/monocyte immaturity in HL-60 cells.


Assuntos
Leucemia , Proteínas WT1 , Animais , Camundongos , Proteínas WT1/genética , Simulação de Acoplamento Molecular , Peróxido de Hidrogênio/farmacologia , Leucemia/metabolismo , Diferenciação Celular , Antígenos CD34/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA