Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524958

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a powerful approach for studying cellular differentiation, but accurately tracking cell fate transitions can be challenging, especially in disease conditions. Here we introduce PhyloVelo, a computational framework that estimates the velocity of transcriptomic dynamics by using monotonically expressed genes (MEGs) or genes with expression patterns that either increase or decrease, but do not cycle, through phylogenetic time. Through integration of scRNA-seq data with lineage information, PhyloVelo identifies MEGs and reconstructs a transcriptomic velocity field. We validate PhyloVelo using simulated data and Caenorhabditis elegans ground truth data, successfully recovering linear, bifurcated and convergent differentiations. Applying PhyloVelo to seven lineage-traced scRNA-seq datasets, generated using CRISPR-Cas9 editing, lentiviral barcoding or immune repertoire profiling, demonstrates its high accuracy and robustness in inferring complex lineage trajectories while outperforming RNA velocity. Additionally, we discovered that MEGs across tissues and organisms share similar functions in translation and ribosome biogenesis.

2.
Cell Res ; 33(8): 585-603, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337030

RESUMO

Dissecting and understanding the cancer ecosystem, especially that around the tumor margins, which have strong implications for tumor cell infiltration and invasion, are essential for exploring the mechanisms of tumor metastasis and developing effective new treatments. Using a novel tumor border scanning and digitization model enabled by nanoscale resolution-SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we identified a 500 µm-wide zone centered around the tumor border in patients with liver cancer, referred to as "the invasive zone". We detected strong immunosuppression, metabolic reprogramming, and severely damaged hepatocytes in this zone. We also identified a subpopulation of damaged hepatocytes with increased expression of serum amyloid A1 and A2 (referred to collectively as SAAs) located close to the border on the paratumor side. Overexpression of CXCL6 in adjacent malignant cells could induce activation of the JAK-STAT3 pathway in nearby hepatocytes, which subsequently caused SAAs' overexpression in these hepatocytes. Furthermore, overexpression and secretion of SAAs by hepatocytes in the invasive zone could lead to the recruitment of macrophages and M2 polarization, further promoting local immunosuppression, potentially resulting in tumor progression. Clinical association analysis in additional five independent cohorts of patients with primary and secondary liver cancer (n = 423) showed that patients with overexpression of SAAs in the invasive zone had a worse prognosis. Further in vivo experiments using mouse liver tumor models in situ confirmed that the knockdown of genes encoding SAAs in hepatocytes decreased macrophage accumulation around the tumor border and delayed tumor growth. The identification and characterization of a novel invasive zone in human cancer patients not only add an important layer of understanding regarding the mechanisms of tumor invasion and metastasis, but may also pave the way for developing novel therapeutic strategies for advanced liver cancer and other solid tumors.


Assuntos
Ecossistema , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Neoplasias Hepáticas/patologia , Hepatócitos/metabolismo , Terapia de Imunossupressão , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA