Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
2.
Front Immunol ; 14: 1184167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675100

RESUMO

Introduction: Colorectal cancer (CRC) is a highly heterogeneous cancer. The molecular and cellular characteristics differ between the colon and rectal cancer type due to the differences in their anatomical location and pathological properties. With the advent of single-cell sequencing, it has become possible to analyze inter- and intra-tumoral tissue heterogeneities. Methods: A comprehensive CRC immune atlas, comprising 62,398 immune cells, was re-structured into 33 immune cell clusters at the single-cell level. Further, the immune cell lineage heterogeneity of colon, rectal, and paracancerous tissues was explored. Simultaneously, we characterized the TAM phenotypes and analyzed the transcriptomic factor regulatory network of each macrophage subset using SCENIC. In addition, monocle2 was used to elucidate the B cell developmental trajectory. The crosstalk between immune cells was explored using CellChat and the patterns of incoming and outgoing signals within the overall immune cell population were identified. Afterwards, the bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) were combined and the relative infiltration abundance of the identified subpopulations was analyzed using CIBERSORT. Moreover, cell composition patterns could be classified into five tumor microenvironment (TME) subtypes by employing a consistent non-negative matrix algorithm. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells in the tumor microenvironment were analyzed by multiplex immunohistochemistry. Results: In the T cell lineage, we found that CXCL13+T cells were more widely distributed in colorectal cancer tissues, and the proportion of infiltration was increased. In addition, Th17 was found accounted for the highest proportion in CD39+CD101+PD1+T cells. Mover, Ma1-SPP1 showed the characteristics of M2 phenotypes and displayed an increased proportion in tumor tissues, which may promote angiogenesis. Plasma cells (PCs) displayed a significantly heterogeneous distribution in tumor as well as normal tissues. Specifically, the IgA+ PC population could be shown to be decreased in colorectal tumor tissues whereas the IgG+ PC one was enriched. In addition, information flow mediated by SPP1 and CD44, regulate signaling pathways of tumor progression. Among the five TME subtypes, the TME-1 subtype displayed a markedly reduced proportion of T-cell infiltration with the highest proportion of macrophages which was correlated to the worst prognosis. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells were observed in the CD44 enriched region. Discussion: The heterogeneity distribution and phenotype of immune cells were analyzed in colon cancer and rectal cancer at the single-cell level. Further, the prognostic role of major tumor-infiltrating lymphocytes and TME subtypes in CRC was evaluated by integrating bulk RNA. These findings provide novel insight into the immunotherapy of CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Retais , Transcriptoma , Prognóstico , Neoplasias Colorretais/genética , Análise de Sequência de RNA , Microambiente Tumoral/genética
3.
Food Funct ; 14(19): 8903-8921, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37702574

RESUMO

Licorice, has a long history in China where it has various uses, including as a medicine, and is often widely consumed as a food ingredient. Licorice is rich in various active components, including polysaccharides, triterpenoids, alkaloids, and nucleosides, among which licochalcone A (LicA) is an active component with multiple physiological effects. Previous studies from our research group have shown that LicA can significantly improve glucose and lipid metabolism and related complications in Type 2 diabetes mellitus (T2DM) mice. However, research on the mechanism of LicA in T2DM mice based on intestinal flora has not been carried out in depth. Therefore, in this study, LicA was taken as the research object and the effects of LicA on glucose and lipid metabolism and intestinal flora in T2DM mice induced by streptozotocin (STZ)/high-fat feed (HFD) were explored. The results indicated that LicA could reduce serum TC, TG, and LDL-C levels, increase HDL-C levels, reduce blood glucose, and improve insulin resistance and glucose tolerance. LicA also alleviated pathological damage to the liver. The results also showed that LicA significantly affected the intestinal microbiota composition and increased the α diversity index. ß Diversity analysis showed that after the intervention of LicA, the composition of intestinal flora was significantly different from that in the T2DM model group. Correlation analysis showed that the changes in glucose and lipid metabolism parameters in mice were significantly correlated with the relative abundance of Firmicutes, Bacteroidetes, Helicobacter, and Lachnospiraceae (p < 0.01). Analysis of key bacteria showed that LicA could significantly promote the growth of beneficial bacteria, such as Bifidobacterium, Turicibacter, Blautia, and Faecococcus, and inhibit the growth of harmful bacteria, such as Enterococcus, Dorea, and Arachnococcus. In conclusion, it was confirmed that LicA reversed the imbalanced intestinal flora, and increased the richness and diversity of the species in T2DM mice.

4.
Aging (Albany NY) ; 15(15): 7794-7810, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37561521

RESUMO

The respiratory and cardiovascular systems are often the most severely impacted by the rapid onset of sepsis, which can lead to multiple organ failure. The mortality has ranged from 10 to 40% when it has evolved into septic shock. This study sought to demonstrate the potential and role of Hmgcs2 in safeguarding against cardiovascular harm in septic mouse models. The cecal ligament and puncture (CLP) model was used to induce sepsis in C57BL/6 mice, with Hmgcs2 expression in the myocardium of the mice being heightened and inflammatory factors being augmented. Subsequently, we utilized ASOs to silence the hmgcs2 gene, and found that silencing accelerated septic myocardial injury and cardiac dysfunction in CLP mice models. In contrast, hmgcs2 attenuated inflammation and apoptosis and protected against septic cardiomyopathy in murine septicemia models. Src production, spurred on by Hmgcs2, triggered the PI3K/Akt pathway and augmented M2 macrophage polarization. Moreover, the inhibition of M2 polarization by an Src antagonist significantly contributed to apoptosis of cardiomyocytes. Our research revealed that Hmgcs2 inhibited the activation of pro-inflammatory macrophages and, through Src-dependent activation of PI3K/Akt pathway, promoted the anti-inflammatory phenotype, thus safeguarding myocardial damage from sepsis. This offers a novel theoretical basis for prevention and treatment of infectious complications.


Assuntos
Traumatismos Cardíacos , Sepse , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Miócitos Cardíacos/metabolismo , Sepse/metabolismo
5.
Exp Lung Res ; 48(9-10): 275-290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346360

RESUMO

Background: Blast lung injury (BLI) is the most common fatal blast injury induced by overpressure wave in the events of terrorist attack, gas and underground explosion. Our previous work revealed the characteristics of inflammationrelated key proteins involved in BLI, including those regulating inflammatory response, leukocyte transendothelial migration, phagocytosis, and immune process. However, the molecular characteristics of oxidative-related proteins in BLI ar still lacking. Methods: In this study, protein expression profiling of the blast lungs obtained by tandem mass tag (TMT) spectrometry quantitative proteomics were re-analyzed to identify the characteristics of oxidative-related key proteins. Forty-eight male C57BL/6 mice were randomly divided into six groups: control, 12 h, 24 h, 48 h, 72 h and 1 w after blast exposure. The differential protein expression was identified by bioinformatics analysis and verified by western blotting. Results: The results demonstrated that thoracic blast exposure induced reactive oxygen species generation and lipid peroxidation in the lungs. Analysis of global proteins and oxidative-related proteomes showed that 62, 59, 73, 69, 27 proteins (accounted for 204 distinct proteins) were identified to be associated with oxidative stress at 12 h, 24 h, 48 h, 72 h, and 1 week after blast exposure, respectively. These 204 distinct proteins were mainly enriched in response to oxidative stress, oxidation-reduction process and lipid metabolic process. We also validated these results by western blotting. Conclusions: These findings provided new perspectives on blast-induced oxidative injury in lung, which may potentially benefit the development of future treatment of BLI.


Assuntos
Traumatismos por Explosões , Lesão Pulmonar , Animais , Camundongos , Masculino , Lesão Pulmonar/metabolismo , Proteômica , Traumatismos por Explosões/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Oxirredução , Pulmão/metabolismo , Lipídeos
6.
Biomed Res Int ; 2022: 8746530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246979

RESUMO

Heart failure is currently one of the leading causes of death worldwide, and the inflammatory factors play an important role in its development. Chitosan oligosaccharide (COS), a low-molecular-weight form of chitosan, has many specific biological activities. In this study, COS effects on heart failure were studied for the first time by performing transverse arch constriction (TAC) surgery in mice, as an animal model of heart failure. Our findings revealed that COS administration (in both 40 mg/kg and 80 mg/kg doses) significantly ameliorated TCA-induced left ventricular (LV) hypertrophy as well as the increase in lung and heart weight in mice, while improving TAC-induced LV dysfunction. Both doses effectively attenuated LV cardiomyocyte hypertrophy, while decreasing heart inflammation after heart failure in mice. In conclusion, our results indicated that the supplementation of COS in normal diet might be an effective way to prevent further myocardial tissue damage in patients suffering from heart failure.


Assuntos
Quitosana , Insuficiência Cardíaca , Animais , Anti-Inflamatórios/farmacologia , Quitosana/farmacologia , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Remodelação Ventricular
7.
World J Clin Cases ; 10(20): 7037-7044, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-36051148

RESUMO

BACKGROUND: Solitary plasmacytoma in the left rib is rare and can cause chest discomfort such as chest pain and tightness, and its clinical manifestations are not typical, so it is often misdiagnosed. We report a case of left costal plasmacytoma misdiagnosed as angina pectoris. We also review the literature and provide suggestions as to how to avoid misdiagnosis. CASE SUMMARY: A 77-year-old man with a history of intermittent chest tightness for 3 years presented with pain in the left chest for 1 wk and was admitted to hospital. The cardiologists initially diagnosed angina pectoris but the findings of coronary angiography were not consistent with the symptoms. Computed tomography showed that the left eighth rib mass was accompanied by bone destruction. The patient was transferred to our department for further treatment. Preoperative biopsy indicated that the lesion was possibly malignant, and elective surgery was performed to remove the lesion. The size of the tumor was about 4 cm. The tumor was spindle-shaped and protruded into the pleural cavity, without invading the lungs. Postoperative pathology confirmed that the left rib lesion was plasmacytoma. After 14 mo follow-up, the patient died of systemic metastasis. CONCLUSION: Left rib solitary plasmacytoma is a rare disease confined to a specific rib and can cause local pain. Attention should be paid to the differential diagnosis of angina pectoris to avoid misdiagnosis.

8.
Chem Biol Interact ; 365: 110079, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926578

RESUMO

Cannabinoid diphenol (CBD) is a non-toxic main component extracted from cannabis, which has the effects of anti-inflammatory, anti-apoptosis and anti-oxidative stress. In recent years, exercise-induced myocardial injury has become a research hotspot in the field of sports medicine and sports physiology. Exercise-induced myocardial injury is closely related to oxidative stress, inflammatory response and apoptosis. However, there is no clear evidence of the relationship between CBD and exercise-induced myocardial injury. In this study, by establishing an animal model of exhaustive exercise training in mice, the protective effect of CBD on myocardial injury in mice was elaborated, and the possible molecular mechanism was discussed. After CBD intervention, the arrangement and rupture of myocardial fiber tissue and the degree of inflammatory cell infiltration were reduced, the deposition of collagen fibers in myocardial tissue decreased. CBD can also significantly inhibit cardiac hypertrophy. Meanwhile, the expression of IL-6, IL-10, TNF-α, Bax, Caspase-3, Bcl-2, MDA-5, IRE-1α, NOX-2, SOD-1, Keap1, Nrf2, HO-1, NF-κB and COX-2 was recovered to normal. In addition, after CBD intervention, the protein expression of Keap1 was down-regulated, the translocation of Nrf2 from the cytoplasm to the nucleus was significantly increased, then the transcriptional activity was increased, and the expression of the downstream HO-1 antioxidant protein was increased, indicating that CBD may improve the cardiac function of exhaustive exercise training mice by activating Keap1/Nrf2/HO-1 signaling pathway. Molecular docking results also confirmed that CBD had a good binding effect with Keap1/Nrf2/HO-1 signaling pathway proteins. In conclusion, the protective mechanism of CBD on myocardial injury in exhaustive exercise training mice may be to activate Keap1/Nrf2/HO-1 signaling pathway, and then exert anti-inflammatory, anti-apoptosis and inhibition of oxidative stress.


Assuntos
Canabidiol , Fator 2 Relacionado a NF-E2 , Animais , Anti-Inflamatórios/farmacologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
9.
Folia Histochem Cytobiol ; 60(2): 167-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645038

RESUMO

INTRODUCTION: Clarifying the role and mechanism of exosome gel in wound repair can provide a new effective strategy for wound treatment. MATERIALS AND METHODS: The cellular responses of adipose mesenchymal stem cell-derived exosomes (AMSC-exos) and the wound healing ability of AMSC-exos-loaded ß-chitin nanofiber (ß-ChNF) hydrogel were studied in vitro in mouse fibroblasts cells (L929) and in vivo in rat skin injury model. The transcriptome and proteome of rat skin were studied with the use of sequenator and LC-MS/MS, respectively. RESULTS: 80 and 160 µg/mL AMSC-exos could promote the proliferation and migration of mouse fibroblastic cells. Furthermore, AMSC-exos-loaded ß-ChNF hydrogel resulted in a significant acceleration rate of wound closure, notably, acceleration of re-epithelialization, and increased collagen expression based on the rat full-thickness skin injury model. The transcriptomics and proteomics studies revealed the changes of the expression of 18 genes, 516 transcripts and 250 proteins. The metabolic pathways, tight junction, NF-κB signaling pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway. Complement factor D (CFD) and downstream Aldolase A (Aldoa) and Actn2 proteins in rats treated with AMSC-exos-loaded ß-ChNF hydrogel were noticed and further confirmed by ELISA and Western blot. CONCLUSION: These findings suggested that AMSC-exos-loaded ß-ChNF hydrogel could promote wound healing with the mechanism which is related to the effect of AMSC-exos on CFD and downstream proteins.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Nanofibras , Actinina , Animais , Quitina/metabolismo , Cromatografia Líquida , Exossomos/metabolismo , Hidrogéis/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Ratos , Espectrometria de Massas em Tandem , Cicatrização
10.
Oxid Med Cell Longev ; 2022: 8407635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620579

RESUMO

Explosion-induced injury is the most commonly encountered wound in modern warfare and incidents. The vascular inflammatory response and subsequent oxidative stress are considered the key causes of morbidity and mortality among those in blast lung injury. It has been reported dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays important roles in regulating vascular endothelial injury repair and angiogenesis, but its role in explosion-induced injury remains to be explained. To explore the mechanism of vascular injury in blast lung, 40 C57BL/6 wild type mice and 40 DDAH1 knockout mice were randomly equally divided into control group and blast group, respectively. Body weight, lung weight, and dry weight of the lungs were recorded. Diffuse vascular leakage was detected by Evans blue test. The serum inflammatory factors, nitric oxide (NO) contents, and ADMA level were determined through ELISA. Hematoxylin-eosin staining and ROS detection were performed for histopathological changes. Western blot was used to detect the proteins related to oxidative stress, cell adhesion molecules and leukocyte transendothelial migration, vascular injury, endothelial barrier dysfunction, and the DDAH1/ADMA/eNOS signaling pathway. We found that DDAH1 deficiency aggravated explosion-induced body weight reduction, lung weight promotion, diffuse vascular leakage histopathological changes, and the increased levels of inflammatory-related factors. Additionally, DDAH1 deficiency also increased ROS generation, MDA, and IRE-1α expression. Regarding vascular endothelial barrier dysfunction, DDAH1 deficiency increased the expression of ICAM-1, Itgal, Rac2, VEGF, MMP9, vimentin, and N-cadherin, while lowering the expression of occludin, CD31, and dystrophin. DDAH1 deficiency also exacerbated explosion-induced increase of ADMA and decrease of eNOS activity and NO contents. Our results indicated that explosion could induce severe lung injury and pulmonary vascular insufficiency, whereas DDAH1 could promote lung endothelial barrier repair and reduce inflammation and oxidative stress by inhibiting ADMA signaling which in turn increased eNOS activity.


Assuntos
Lesão Pulmonar , Lesões do Sistema Vascular , Amidoidrolases/metabolismo , Animais , Explosões , Leucócitos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Migração Transendotelial e Transepitelial
11.
J Mater Sci Mater Med ; 33(2): 12, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35050422

RESUMO

Because of stem cells are limited by the low efficiency of their cell homing and survival in vivo, cell delivery systems and scaffolds have attracted a great deal of attention for stem cells' successful clinical practice. ß-chitin nanofibers (ß-ChNF) were prepared from squid pens in this study. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy proved that ß-ChNFs with the diameter of 5 to 10 nm were prepared. ß-ChNF dispersion became gelled upon the addition of cell culture medium. Cell culture experiments showed that ß-ChNFs exhibited negligible cytotoxicity towards ADSCs and L929 cells, and it was found that more exosomes were secreted by the globular ADSCs grown in the ß-ChNF hydrogel. The vivo experiments of rats showed that the ADSCs-loaded ß-ChNF hydrogel could directly cover the wound surface and significantly accelerate the wound healing and promote the generation of epithelization, granulation tissue and collagen. In addition, the ADSCs-loaded ß-ChNF hydrogel clearly regulated the expressions of VEGFR, α-SMA, collagen I and collagen III. Finally, we showed that ADSCs-loaded ß-ChNF hydrogel activated the TGFß/smad signaling. The neutralization of TGFß markedly reduced Smad phosphorylation and the expressions of TIMP1, VEGFR and α-SMA. Taken together, these findings suggest that ADSCs-loaded ß-ChNF hydrogel promises for treating wounds that are challenge to heal via conventional methods. Graphical abstract.


Assuntos
Adipócitos , Quitina/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/fisiologia , Nanofibras/química , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis , Hidrogéis/química , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais
12.
Front Mol Neurosci ; 14: 688050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630032

RESUMO

Recurrent chest blast exposure can lead to brain inflammation, oxidative stress, and mental disorders in soldiers. However, the mechanism that underlies brain injury caused indirectly by chest blasts remains unclear. It is urgent to find additional reliable biomarkers to reveal the intimate details of the pathogenesis of this phenomenon. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to screen for differentially expressed proteins in rat brain at different time points after a chest blast. Data are available via ProteomeXchange with the identifier PXD025204. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Database for Annotation, Visualization and Integrated Discovery (DAVID), and Cytoscape analyses were used to analyze the proteomic profiles of blast-exposed rats. In addition, we performed Western blotting to verify protein levels. We identified 6,931 proteins, of which 255 were differentially expressed and 43, 84, 52, 97, and 49 were identified in brain tissues at 12, 24, 48, and 72 h and 1 week after chest blast exposure, respectively. In this study, the GO, KEGG, Clusters of Orthologous Groups of proteins, and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analyses indicated that brain damage caused by chest blast exposure involved many important biological processes and signaling pathways, such as inflammation, cell adhesion, phagocytosis, neuronal and synaptic damage, oxidative stress, and apoptosis. Furthermore, Western blotting confirmed that these differentially expressed proteins and affected signaling pathways were associated with brain damage caused by chest blast exposure. This study identifies potential protein biomarkers of brain damage caused indirectly by chest blast and new targets for the treatment of this condition.

13.
Injury ; 52(10): 2795-2802, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34454721

RESUMO

Blast injuries include the various types of internal and external trauma caused by the impact force of high-speed blast waves with multiple mechanisms involved. Thoracic blast exposure could induce neurotrauma as well, but effective therapies are lacking. Resveratrol is a polyphenol flavonoid secreted by plants and has been shown to provide cardiovascular protection and play anti-inflammatory, anti-oxidation and anti-cancer roles. However, the effects of resveratrol on thoracic blast exposure-induced brain injury have not been investigated. To explore this, a mouse model of thoracic blast exposure-induced brain injury was established. Sixty C57BL/6 wild type mice were randomly divided equally into four groups (one control group, one model group, and model groups with 25 or 50 mg/kg resveratrol injected intraperitoneally). As traumatic brain injury often accompanied by mental symptoms, cognitive dysfunction and anxious behavior were evaluated by Y maze, elevated plus maze and open field test. We also examined the mice for histopathological changes by hematoxylin-eosin staining; the expressions of inflammatory-related factors by ELISA; endoplasmic reticulum stress in brain tissue via the generation of reactive oxygen species (ROS) and the expressions of inositol-requiring enzyme-α (IRE-α) and C/EBP homologous protein (CHOP); apoptosis by measuring levels of Bax, p53 and Bcl-2. In addition, proteins of related pathways were also studied by western blotting. We found that resveratrol significantly reduced the levels of inflammatory-related factors, including interleukin (IL)-1ß, IL-4, and high mobility group box protein 1(HMGB1), and increased the level of anti-inflammatory-related factor, IL-10, under thoracic blast exposure (P < 0.05). Cognitive dysfunction and anxious behavior were also ameliorated by resveratrol. In brain tissue, resveratrol significantly attenuated thoracic blast exposure-induced generation of ROS and expressions of IRE-α and CHOP, lowered the expressions of Bax and p53, and maintained Bcl-2 expression (P < 0.05). Additionally, resveratrol significantly ameliorated thoracic blast exposure-induced increases of Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor (NF)-κB and the decrease in nuclear factor erythroid 2-related factor 2(Nrf2) expression in the brain (P < 0.05). Our results indicate that resveratrol has a protective effect on thoracic blast exposure-induced brain injury that is likely mediated through the Nrf2/Keap1 and NF-κB signaling pathways.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Camundongos , Apoptose , Encéfalo , Estresse do Retículo Endoplasmático , Inflamação , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Resveratrol/farmacologia , Transdução de Sinais
14.
Bioengineered ; 12(1): 4946-4961, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34365894

RESUMO

The solute carrier family has been reported to play critical roles in the progression of several cancers; however, the relationship between solute carrier family 12 member 8 (SLC12A8) and bladder cancer (BC) has not been clearly confirmed. This study explores the prognostic value of SLC12A8 for BC and its correlation with immune cell infiltration. We found that the expression of SLC12A8 mRNA was significantly overexpressed in BC tissues compared with noncancerous tissues in multiple public databases, and the result was validated using real-time PCR and immunohistochemistry (IHC). The Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of SLC12A8 for BC. The high expression of SLC12A8 led to a shorter overall survival time and was an unfavorable prognostic biomarker for BC. The mechanisms of SLC12A8 promoting tumorigenesis were investigated by Gene Set Enrichment Analysis (GSEA). Moreover, the correlations of SLC12A8 expression with the tumor-infiltrating immune cells (TICs) in BC were explored using TIMER 2.0 and CIBERSORT. SLC12A8 was associated with CD4+ T cells, dendritic cells, neutrophils, and macrophages infiltration. The expression of SLC12A8 was positively correlated with crucial immune checkpoint molecules. In conclusion, SLC12A8 might be an unfavorable prognostic biomarker in BC related to tumor immune cell infiltration.


Assuntos
Simportadores de Cloreto de Sódio-Potássio , Neoplasias da Bexiga Urinária , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/imunologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
15.
Life Sci ; 280: 119722, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153300

RESUMO

Although melatonin has been demonstrated to exert a potent antioxidant effect, the ability of melatonin to alleviate blast-induced oxidative stress in the hypothalamic-pituitary-gonadal (HPG) axis remains unclear. This study aimed to elucidate the effects and underlying mechanism of melatonin pretreatment on the HPG axis disrupted by blast injury. Sixty C57BL/6 mice were randomly divided into control, blast, and blast + melatonin groups for behavioral experiments. The elevated maze experiment, open field experiment, and Morris Water Maze experiment were carried out on the 7th, 14th and 28th day after the blast injury. Fifty Sprague Dawley rats were randomly divided into control, blast, blast + melatonin, and blast + melatonin + luzindole groups for hormone assays and molecular and pathological experiments. Blood samples were used for HPG axis hormone detection and ELISA assays, and tissue samples were used to detect oxidative stress, inflammation, apoptosis, and stress-related protein levels. The results showed that melatonin pretreatment alleviated blast-induced behavioral abnormalities in mice and maintained the HPG axis hormone homeostasis in rats. Additionally, melatonin significantly reduced MDA5 expression and increased the expression of Nrf2/HO-1. Moreover, melatonin significantly inhibited NF-κB expression and upregulated IL-10 expression, and it reversed the blast-induced high expression of caspase-3 and Bax and the low expression of Bcl-2. Furthermore, luzindole counteracted melatonin inhibition of NF-κB and upregulated Nrf2/HO-1. Melatonin significantly alleviated blast-induced HPG axis hormone dyshomeostasis, behavioral abnormalities, oxidative stress, inflammation, and apoptosis, which may be achieved by upregulating the Nrf2/HO-1 signaling pathway. Our study suggested that melatonin pretreatment is a potential treatment for blast-induced HPG axis hormonal and behavioral abnormalities.


Assuntos
Antioxidantes/uso terapêutico , Traumatismos por Explosões/tratamento farmacológico , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Melatonina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/patologia , Heme Oxigenase-1/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Masculino , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
16.
Front Cardiovasc Med ; 8: 656093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969020

RESUMO

Circular RNA (circRNA) is a subclass of non-coding RNAs that enables the circular transcripts resistant to the exonuclease digestion. Iron homeostasis is essential for the body to maintain normal physiological functions. At present, the relationship among circRNA, iron metabolism and heart failure remains largely unknown. This study aimed to explore the regulatory mechanism of circRNA and iron metabolism in heart failure. We obtained circRNA, miRNA and mRNA data from public databases and built a ceRNA network. The prediction results were verified in the myocardial tissues of pressure overload-induced heart failure mice through the use of histopathological staining methods, iron and malondialdehyde (MDA) measurement tests, quantitative real-time PCR (qRT-PCR), Western blot analysis and luciferase reporter assay. A total of 4 genes related to iron metabolism and oxidative stress were identified, and a ceRNA network involving 7 circRNAs, 7 miRNAs, and 4 mRNAs was constructed using bioinformatics tools. The results of qRT-PCR and Western blot analyses indicated that the expression level of FTH1 was similar with that predicted by bioinformatics analysis. Echocardiographic measurement showed that heart failure mice have lower fractional shortening and ejection fraction. Moreover, the myocardium of heart failure mice displayed obvious fibrosis as well as increased levels of iron and MDA compared to control mice. Besides, circSnx12 could act as an endogenous sponge to bind with miR-224-5p, and the 3'UTR region of FTH1 also had miRNA binding sites. A circRNA-miRNA-mRNA regulatory network was successfully constructed by identifying differentially expressed genes related to iron metabolism. This new approach reveals potential circRNA targets for the treatment of heart failure.

17.
Oxid Med Cell Longev ; 2021: 8899274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007409

RESUMO

Previous studies found that blast injury caused a significant increased expression of interleukin-1, IL-6, and tumor necrosis factor, a significant decrease in the expression of IL-10, an increase in Evans blue leakage, and a significant increase in inflammatory cell infiltration in the lungs. However, the molecular characteristics of lung injury at different time points after blast exposure have not yet been reported. Therefore, in this study, tandem mass spectrometry (TMT) quantitative proteomics and bioinformatics analysis were used for the first time to gain a deeper understanding of the molecular mechanism of lung blast injury at different time points. Forty-eight male C57BL/6 mice were randomly divided into six groups: control, 12 h, 24 h, 48 h, 72 h, and 1 w after low-intensity blast exposure. TMT quantitative proteomics and bioinformatics analysis were performed to analyze protein expression profiling in the lungs from control and blast-exposed mice, and differential protein expression was verified by Western blotting. The results demonstrated that blast exposure induced severe lung injury, leukocyte infiltration, and the production of inflammatory factors in mice. After analyzing the expression changes in global proteins and inflammation-related proteomes after blast exposure, the results showed that a total of 6861 global proteins and 608 differentially expressed proteins were identified, of which 215, 128, 187, 232, and 65 proteins were identified at 12 h, 24 h, 48 h, 72 h, and 1 week after blast exposure, respectively. Moreover, blast exposure-induced 177 differentially expressed proteins were associated with inflammatory responses, which were enriched in the inflammatory response regulation, leukocyte transendothelial migration, phagocytosis, and immune response. Therefore, blast exposure may induce early inflammatory response of lung tissue by regulating the expression of key proteins in the inflammatory process, suggesting that early inflammatory response may be the initiating factor of lung blast injury. These data can provide potential therapeutic candidates or approaches for the development of future treatment of lung blast injury.


Assuntos
Traumatismos por Explosões/fisiopatologia , Inflamação/fisiopatologia , Leucócitos/metabolismo , Lesão Pulmonar/fisiopatologia , Fagocitose/fisiologia , Proteômica/métodos , Migração Transendotelial e Transepitelial/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos
19.
Exp Lung Res ; 46(8): 308-319, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748703

RESUMO

AIM OF THE STUDY: The mechanism by which primary shock wave causes lung injury is unclear. The aim of this study is to find the changes of protein that can be helpful in understanding blast-induced lung injury. MATERIAL AND METHODS: A quantitative analysis of their global proteome was conducted in lung from mice with blast injury using LC-MS/MS. Protein annotation, unsupervised hierarchical clustering, functional classification, functional enrichment and cluster, and protein-protein interaction analyses were performed. Furthermore, western blotting was used to validate the changed protein levels. RESULTS: A total of 6498 proteins were identified, of which 5520 proteins were quantified. The fold-change cutoff was set at 1.2; 132 proteins were upregulated, and 104 proteins were downregulated. The bioinformatics analysis indicated that the differentially expressed proteins were involved in the cholesterol metabolism, asthma, nonalcoholic fatty liver disease. Remarkably, the processes related to the change of oxidative phosphorylation including the NADH dehydrogenase, Cytochrome C reductase, Cytochrome C oxidase and F-type ATPase were significantly upregulated, which were further verified by western blotting. CONCLUSION: These results confirmed that the oxidative phosphorylation is critical to blast-induced lung injury. LC/MS-based profiling presented candidate target/pathways that could be explored for future therapeutic development.


Assuntos
Traumatismos por Explosões/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Proteoma/metabolismo , Animais , Asma/metabolismo , Colesterol/metabolismo , Regulação para Baixo/fisiologia , Estudos de Avaliação como Assunto , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosforilação Oxidativa , Proteômica/métodos
20.
J Mol Cell Cardiol ; 146: 84-94, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32712269

RESUMO

Chronic heart failure is associated with increased interleukin-1ß (IL-1ß), leukocyte infiltration, and fibrosis in the heart and lungs. Here we further studied the role of IL-1ß in the transition from left heart failure to pulmonary hypertension and right ventricular hypertrophy in mice with existing left heart failure produced by transverse aortic constriction. We demonstrated that transverse aortic constriction-induced heart failure was associated with increased lung inflammation and cleaved IL-1ß, and inhibition of IL-1ß signaling using blocking antibodies of clone B122 effectively attenuated further decrease of left ventricular systolic function in mice with existing heart failure. We found that inhibition of IL-1ß attenuated lung inflammation, inflammasome activation, fibrosis, oxidative stress, and right ventricular hypertrophy. IL-1ß blocking antibodies of clone B122 also significantly attenuated lung T cell activation. Together, these data indicate that IL-1ß signaling exerts a causal role for heart failure progression, or the transition from left heart failure to lung remodeling and right heart hypertrophy.


Assuntos
Progressão da Doença , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Interleucina-1beta/metabolismo , Estresse Oxidativo , Pneumonia/patologia , Pneumonia/fisiopatologia , Sístole , Animais , Anticorpos/farmacologia , Constrição Patológica , Eletrocardiografia , Fibrose , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Inflamassomos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Testes de Neutralização , Tamanho do Órgão/efeitos dos fármacos , Pneumonia/complicações , Pneumonia/diagnóstico por imagem , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA