Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36981588

RESUMO

INTRODUCTION: This study aimed to assess the influence of experimental warming and fertilization on rice yield and paddy methane emissions. METHODS: A free-air temperature increase system was used for the experimental warming treatment (ET), while the control treatment used ambient temperature (AC). Each treatment contained two fertilization strategies, (i) normal fertilization with N, P and K fertilizers (CN) and (ii) without N fertilizer input (CK). RESULTS: The yield was remarkably dictated by fertilization (p < 0.01), but not warming. Its value with CN treatment increased by 76.24% compared to CK. Also, the interactive effect of warming and fertilization on CH4 emissions was insignificant. The seasonal emissions from warming increased by 36.93% compared to AC, while the values under CN treatment increased by 79.92% compared to CK. Accordingly, the ET-CN treatment obtained the highest CH4 emissions (178.08 kg ha-1), notably higher than the other treatments. Also, the results showed that soil fertility is the main driver affecting CH4 emissions rather than soil microorganisms. CONCLUSIONS: Fertilization aggravates the increasing effect of warming on paddy methane emissions. It is a daunting task to optimize fertilization to ensure yield and reduce methane emissions amid global warming.


Assuntos
Aquecimento Global , Oryza , Agricultura/métodos , Óxido Nitroso/análise , Solo , Fertilizantes/análise , Metano , Fertilização
2.
Huan Jing Ke Xue ; 44(3): 1553-1561, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922216

RESUMO

Farmland is the important soil carbon pool of terrestrial ecosystems and organic nutrient pool for crop growth. To clarify the impact of climate warming on the soil carbon pool, this study analyzed the effects of warming and fertilization on soil organic carbon and its labile components under rice-wheat rotation using a free-air temperature increase system. The variation in soil carbon pool management index (CPMI) was also evaluated. The results showed that the combined effects of warming and fertilization on soil organic carbon content and labile organic carbon components were insignificant. Warming increased the soil organic carbon (SOC) content, and the differences between warming and the ambient control in total organic carbon (TOC) and recalcitrant organic carbon (ROC) reached a statistically significant level. Compared with those under the ambient control, the contents of TOC, ROC, and labile organic carbon (LOC) subjected to warming increased by 7.72%, 7.42%, and 10.11%, respectively. The increased microbial biomass carbon (MBC) content (20.4%) and decreased particulate organic carbon (POC) content (36.51%) may have been the main reason for the variation in SOC. Warming showed no significant effect on soil dissolved organic carbon (DOC) content, whereas it markedly reduced its soluble microbial by-product components (41.89%). The results also showed that fertilization had no significant effect on soil TOC, ROC, and LOC, but it notably reduced the contents of DOC and POC and increased the MBC content. Compared with those under the control without fertilization, the contents of DOC and POC subjected to fertilization decreased by 35.44% and 28.33%, respectively, and the MBC content increased by 33.38%. Additionally, fertilization tended to increase the anthropogenic humus component (5.13%) and soluble microbial by-product component (29.41%) in dissolved organic matter and reduce the terrestrial humus component (13.33%). Warming and fertilization both tended to improve soil CPMI. Affected by SOC and LOC, the increase in soil carbon pool index and soil lability index were the main reason for the increase in soil CPMI under warming and fertilization, respectively. Overall, the results revealed that climate warming can affect the soil carbon pool by changing soil labile carbon components, which are not affected by fertilization.


Assuntos
Oryza , Solo , Carbono , Triticum , Ecossistema , Fertilização , Agricultura/métodos
3.
Huan Jing Ke Xue ; 44(1): 473-481, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635835

RESUMO

Clayey soil seriously affects water-holding capacity and nutrient movement. Adopting appropriate agronomic measures to optimize the distribution of soil inorganic nitrogen (SIN) and reduce the nitrogen (N) loss in this soil is the key to agricultural sustainable development. To clarify the effect of deep fertilization of slow/controlled release fertilizer with sowing on N loss in a clayey soil wheat field, two types of fertilizers, conventional fertilizer (CN) and slow/controlled release fertilizer (RCU), were selected in this study. Here, we evaluated the effects of these two fertilizer types on wheat yield, seasonal N runoff loss, ammonia volatilization, and N2O emissions in wheat fields in two typical fertilization modes (manual surface sowing and spreading (B) and belowground fertilization of slow/controlled release urea with mechanized strip sowing (D)). The temporal and spatial distribution characteristics of SIN in topsoil were also analyzed. The results showed that under the same fertilizer type, the wheat yield of D treatment was significantly higher than that of B treatment, whereas the yield of RCU was notably higher than that of CN under the same fertilization mode. D-RCU achieved the highest yield of 6.97 t·hm-2. The seasonal N losses from runoff and ammonia volatilization were higher than that from N2O emissions, and the responses of different N loss pathways to fertilizer types and fertilization methods were diverse. Fertilizer type and runoff occurrence time were the main influencing factors of N runoff loss, and N runoff loss of the RCU treatment was higher in the non-fertilization period. Unfortunately, affected by annual rainfall pattern, the seasonal N runoff loss of the RCU treatment (20.35 kg·hm-2) was significantly higher than that of the CN treatment (10.49 kg·hm-2). The late growth period was the main phase of ammonia volatilization, and the later period was jointly affected by fertilization modes and fertilizer types. The B-CN treatment induced the highest seasonal ammonia volatilization (18.15 kg·hm-2), which was significantly higher than that of the other treatments (7.31-8.38 kg·hm-2). Additionally, the D-RCU treatment (2.41 kg·hm-2) tended to reduce the N2O emissions in comparison to that in the B-CN treatment (4.02 kg·hm-2). The results also indicated that the horizontal movement of SIN was higher than the vertical movement. Deep fertilization of RCU was conducive to optimizing the spatial and temporal distribution of SIN, which was the main reason for the increase in wheat yield and the control of N loss from wheat fields. These results suggest that RCU is a suitable alternative fertilizer for increasing yield and reducing N loss in clayey soil wheat fields; D-RCU can increase the wheat yield and reduce ammonia volatilization and N2O emissions in wheat fields by optimizing the spatial and temporal distribution of SIN, and its increasing effect on N runoff loss in the non-fertilization period deserves attention.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Triticum , Argila , Amônia/análise , Preparações de Ação Retardada , Agricultura/métodos , Nitrogênio , Óxido Nitroso/análise
4.
Environ Sci Technol ; 56(8): 4871-4881, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35369697

RESUMO

Global warming is expected to affect methane (CH4) emissions from rice paddies, one of the largest human-induced sources of this potent greenhouse gas. However, the large variability in warming impacts on CH4 emissions makes it difficult to extrapolate the experimental results over large regions. Here, we show, through meta-analysis and multi-site warming experiments using the free air temperature increase facility, that warming stimulates CH4 emissions most strongly at background air temperatures during the flooded stage of ∼26 °C, with smaller responses of CH4 emissions to warming at lower and higher temperatures. This pattern can be explained by divergent warming responses of plant growth, methanogens, and methanotrophs. The effects of warming on rice biomass decreased with the background air temperature. Warming increased the abundance of methanogens more strongly at the medium air temperature site than the low and high air temperature sites. In contrast, the effects of warming on the abundance of methanotrophs were similar across the three temperature sites. We estimate that 1 °C warming will increase CH4 emissions from paddies in China by 12.6%─substantially higher than the estimates obtained from leading ecosystem models. Our findings challenge model assumptions and suggest that the estimates of future paddy CH4 emissions need to consider both plant and microbial responses to warming.


Assuntos
Euryarchaeota , Oryza , Agricultura , China , Ecossistema , Metano/análise , Óxido Nitroso/análise , Solo , Temperatura
5.
Environ Pollut ; 294: 118598, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861331

RESUMO

Biochar has been considered as a potential tool to mitigate soil ammonia (NH3) volatilization and greenhouse gases (GHGs) emissions in recent years. However, the aging effect of biochar on soils remains elusive, which introduces uncertainty on the effectiveness of biochar to mitigate global warming in a long term. Here, a meta-analysis of 22 published works of literature with 217 observations was conducted to systematically explore the aging effect of biochar on soil NH3 and GHGs emissions. The results show that, in comparison with the fresh biochar, the aging makes biochar more effective to decrease soil NH3 volatilization by 7% and less risk to contribute CH4 emissions by 11%. However, the mitigation effect of biochar on soil N2O emissions is decreased by 15% due to aging. Additionally, aging leads to a promotion effect on soil CO2 emissions by 25% than fresh biochar. Our findings suggest that along with aging, particularly the effect of artificial aging, biochar could further benefit the alleviation of soil NH3 volatilization, whereas its potential role to mitigate global warming may decrease. This study provides a systematic assessment of the aging effect of biochar to mitigate soil NH3 and GHGs, which can provide a scientific basis for the sustainable green development of biochar application.


Assuntos
Gases de Efeito Estufa , Agricultura , Carvão Vegetal , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Solo , Volatilização
6.
Huan Jing Ke Xue ; 42(7): 3451-3457, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212672

RESUMO

Hydrochar can mitigate ammonia volatilization when applied in paddy fields due to its acidity and adsorption property. To realize the recycling of agricultural biowaste as well as the control of nutrient loss from paddy fields, a simulation soil-column experiment with wheat straw hydrochar (WHC) and water-washed hydrochar (W-WHC) was conducted to evaluate the performance of rice yield and ammonia volatilization from paddy fields. The results showed that WHC and W-WHC applied in paddy fields both increased the rice yield and the increased effect at low application rate (0.5%) was higher than that at high application rate (1.5%). In comparison with the control treatment (CKU), the rice yields achieved from low application rate treatments for WHC and W-WHC increased by 17.16% and 20.20% respectively. Except for the equal emission rate between W-WHC with low application rate and CKU treatments, hydrochar (WHC, W-WHC) addition reduced the ammonia volatilization from paddy fields when compared with the CKU. Among them, the ammonia volatilization levels from low-application WHC and high-application W-WHC treatments were significantly lower than that from the CKU treatment, reduced by 31.01% and 17.40%, respectively. Based on the analysis of ammonia volatilization during different fertilization stages, the control effect of hydrochar addition on ammonia volatilization was mainly benefited from tillering and panicle fertilizer stages. The change in the nitrogen concentration of surface water at the tillering fertilizer stage and in pH at the panicle fertilizer stage with the addition of hydrochar was the main driving factor for the reduction in ammonia volatilization. The results show that sufficient amounts of hydrochar derived from wheat straw application can increase crop yield while reducing ammonia volatilization from paddy fields. This method provides an effective route for recycling agricultural biowastes.


Assuntos
Amônia , Oryza , Amônia/análise , Fertilizantes/análise , Nitrogênio/análise , Solo , Triticum , Volatilização
7.
Sci Total Environ ; 793: 148554, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171810

RESUMO

Surface runoff is the main cause of farmland nitrogen (N) losses in plain areas, which adversely affect water quality. The impact of fertilization on N runoff loss often varies. A meta-analysis was performed using 245 observations from 31 studies in China, to estimate the response of N loss in both paddy and upland fields subjected to different fertilization strategies, and investigate the link between N runoffs, soil properties, as well as precipitation in the planting season. The results showed that compared to the control (without fertilization), N losses subjected to fertilization increased from 3.31 kg/ha to 10.03 kg/ha and from 3.00 kg/ha to 11.24 kg/ha in paddy and upland fields respectively. Importantly, paddy N loss was significantly correlated with fertilizer type and N application rate (predictors); in upland fields N application rate and seasonal precipitation were the main driving factors. For the N application rate, N loss increased with increase in rates for both paddies and upland fields. Moreover, the N loss from upland fields increased with the precipitation during planting season. Between the three fertilizers used in paddies, the increase in loss of CRF (controlled release fertilizer) or OF (organic fertilizer) was lower than that of CF (inorganic chemical fertilizer) with the lowest value in CRF. Subset analysis showed that the effect of CRF and OF in paddies was not affected by the predictors, revealing the steadily controlling property of CRF and OF in paddies. Also, all the predictors had an insignificant impact to N loss risk in paddies during the high application rate. Overall, the results confirm the importance of N dosage in N runoff loss from farmland. Fertilizer type is a key consideration for N loss control in paddies, while the seasonal precipitation should not be ignored in upland fields.


Assuntos
Nitrogênio , Oryza , Agricultura , China , Fazendas , Fertilização , Fertilizantes , Nitrogênio/análise , Fósforo/análise , Solo
8.
Environ Pollut ; 285: 117382, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34049130

RESUMO

Clarifying the properties/features of nutrient loss from farmland surface runoff is essential for the mitigation of nutrient losses. Plough pan formation underneath topsoil is a common feature of long-term paddy soils that significantly affects water movement and nutrient runoff loss, especially during the upland season of paddy-upland rotation. To characterize the nutrients that are lost from wheat fields of paddy-wheat rotation with runoff, a field experiment was conducted in a wheat field using a simulated rainfall system from November 2019 to May 2020 in Nanjing, China. The aim of this study was to investigate the temporal characteristics of nitrogen (N) and phosphorus (P) loss under different rainfall intensities (low, 30 mm h-1; middle, 60 mm h-1; high, 90 mm h-1). The results showed that the time interval from the beginning of rain to the occurrence of runoff (time to runoff, Tr) was negatively correlated with "rainfall intensity" (Ri) (P<0.01) but unaffected by soil moisture. Different rainfall intensities had no effect on the runoff coefficient (the ratio of the runoff volume over the precipitation, 0.14-0.17). The N and P loss concentrations in the nutrient discharge followed a power-function relationship that decreased over time (P<0.01), and the peak nutrient concentration appeared during the initial runoff period (0-5 min). The N and P loss rates were the highest during the middle-to-late discharge period (15-30 min) for all intensities. In terms of cumulative nutrient losses, the amounts of TN lost were similar for all rainfall intensities, while TP significantly increased with intensity. The results revealed that nitrate-nitrogen (NOX--N) and particulate phosphorus (PP) were the predominant forms of N and P losses. Overall, during the initial runoff period, nutrient concentration peaks, whereas the nutrient loss rate is the highest during the middle-late phase of the phenomenon.


Assuntos
Oryza , Triticum , China , Nitrogênio/análise , Nutrientes , Fósforo/análise , Chuva , Rotação , Estações do Ano , Solo , Movimentos da Água
9.
Environ Sci Technol ; 55(11): 7721-7730, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973762

RESUMO

Nitrification and immobilization compete for soil ammonium (NH4+); the relative dominance of these two processes has been suggested to reflect the potential risk of nitrogen loss from soils. Here, we compiled a database and developed a stochastic gradient boosting model to predict the global potential risk of nitrogen loss based on the ratio of nitrification to immobilization (N/I). We then conducted a meta-analysis to evaluate the effects of common management practices on the N/I ratio. The results showed that the soil N/I ratio varied with climate zones and land use. Soil total carbon, total nitrogen, pH, fertilizer nitrogen application rate, mean annual temperature, and mean annual precipitation are important factors of soil N/I ratio. Meta-analysis indicated that biochar, straw, and nitrification inhibitor application reduced the soil N/I ratio by 67, 64, and 78%, respectively. Returning plantation to forest and cropland to grassland decreased the soil N/I ratio by 88 and 45%, respectively. However, fertilizer nitrogen application increased the soil N/I ratio by 92%. Our study showed that the soil N/I ratio and its associated risk level of nitrogen loss were highly related to long-term soil and environmental properties with high spatial heterogeneity.


Assuntos
Nitrificação , Nitrogênio , Fertilizantes/análise , Florestas , Nitrogênio/análise , Solo , Microbiologia do Solo
10.
Huan Jing Ke Xue ; 41(12): 5648-5655, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33374082

RESUMO

Biochar application on farmlands is an efficient way to realize agricultural/forestry biowaste recycling in parallel with carbon sequestration. Recently, hydrochar produced by hydrothermal carbonization processes has attracted attention due to the advantages over conventional pyrolytic production (i.e., easier production process, higher carbon yield, reduced energy consumption, and lower flue gas emissions). To clarify the effects of hydrochar applied in farmlands on crop production, as well as to realize the recycling of agricultural/forestry biowaste resources, this study evaluated the effects of four types of modified-hydrochar addition on rice yield and nitrogen uptake in two typical soils and the possible influencing factors through soil-column experiments and material characterization. The results showed that sawdust hydrochar and/or straw hydrochar could increase rice yield and nitrogen uptake, as well as reduce N loss, in both treated soils after physical or biological modification, an effect that was independent of the application rate (5‰, 15‰; mass fraction). In comparison to the control, the rice yield and nitrogen uptake of hydrochar-addition treatments increased by 9.2%-20.7% and 7.7%-17.0% respectively. Sawdust hydrochar, with a wider C/N material, was conducive to improving nitrogen uptake in high fertility soils; meanwhile, the nitrogen utilization in low fertility soils was less affected by the type of hydrochar due to the limitations imposed by multiple factors. The results of material characterization showed that the surface of the hydrochar was rich in nutrients; the pore structure of hydrochar after washing or biological modification was greatly improved, the relative content of C was remarkably reduced, and the relative contents of N and O notably increased, which could affect nutrient fixation and supply. Thus, the improved pore structure and increased contents of N and O of modified hydrochars may be the key drivers for the increase in rice yield and nitrogen uptake with hydrochar addition. These results suggest that modified hydrochar is beneficial to realizing agricultural/forestry biowaste recycling and improving crop yield and nitrogen utilization, as well as reducing N loss from farmlands.


Assuntos
Nitrogênio , Oryza , Agricultura , Carbono , Solo
11.
Sci Total Environ ; 748: 142457, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113706

RESUMO

As a good soil synergist, biochar has a wide prospect in improving soil fertility and crop production. Although hydrochar, produced by hydrothermal carbonization process has attracted attention due to production advantages, hydrochar application in low fertility soils as well as its impact to the associated greenhouse gas (GHG) emissions in farmlands is rarely reported. To advance our understanding on the effect of hydrochar addition on grain yield from low fertility soils and the corresponding CH4 and N2O emissions, a soil-column experiment, with two hydrochar types (sawdust-derived hydrochar (SDH), microbial-aged hydrochar (A-SDH)) at two application rates (5‰, 15‰; (w/w)), was conducted. The results showed that hydrochar addition evidently increased rice yield. The N2O emissions were mainly related to the substrate supply of the hydrochar itself and less affected by the denitrifiers (functional genes) present. Hydrochar amendment at low application rate (5‰; SDH05, A-SDH05) significantly decreased the cumulative N2O emissions by 26.32% ~ 36.84%. Additionally, hydrochar amendment could not increase the CH4 emissions due to the substrate limitation; the cumulative emissions were similar with those from the control, ranging between 11.1-12.8 g m-2. Regarding grain yield and global warming potential, greenhouse gas intensity from the soils subjected to hydrochar (SDH05, A-SDH05, A-SDH15) were significantly lower than that of the control, observation attributed to the high yield and low N2O emissions. Overall, hydrochar addition is an effective strategy to ensure grain yield in low fertility soils with relatively low/controlled GHG emissions, especially when the amendment is applied at low application rate.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Carvão Vegetal , Ecossistema , Fertilizantes/análise , Metano/análise , Óxido Nitroso/análise , Solo
12.
Sci Total Environ ; 725: 138261, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298880

RESUMO

Optimum fertilization is an efficient method to maintain rice yield and reduce N-losses. It is essential though to evaluate methane emissions from paddy fields, to further understand its impact on greenhouse gas budget. Therefore, a field experiment was conducted to investigate the effect of long-term optimum fertilization on CH4 emissions and rice yield. We collected data in the 7th and 8th year from a field experiment initiated in 2010. Four optimum fertilization strategies, reduced N-fertilizer and zero-P treatment (RNP, 200 kg N/ha), sulfur-coated urea combined with uncoated urea treatment (SCU, 200 kg N/ha), organic fertilizer combined chemical fertilizer treatment (OCN, 200 kg N/ha), organic fertilizer treatment (OF, 200 kg N/ha); and two controls, the farmers' N management (FN, 270 kg N/ha) and zero-N treatment (N0), were employed. The results showed the rice yields achieved for the optimum fertilization treatments (RNP, SCU, OCN, and OF) were similar with those for the FN. No significant differences in CH4 emissions among all treatments. Cumulative seasonal CH4 emissions were negatively correlated with grain yield (P < 0.05). In the RNP and SCU treatments, soil available K, mcrA gene and available P were the key variables affecting CH4 emissions; soil available K, available P and SOC contents were the key emissions factors for OCN and OF treatments. The SCU achieved the highest rice yield and lowest CH4 emission intensity among optimum fertilization treatments. These results suggest that long-term application of sulfur-coated urea combined with uncoated urea can maintain rice yield and reduce methane emissions from rice paddies.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Fertilizantes/análise , Metano/análise , Óxido Nitroso/análise , Solo
13.
Sci Total Environ ; 717: 137127, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084683

RESUMO

Hydrothermal carbonization represents a promising technique for transforming microalgae into the hydrochar with abundant phytoavailable nutrients. However, the effects of microalgae-derived hydrochars on the gaseous nitrogen (N) loss from agricultural field are still unclear. Chlorella vulgaris powder (CVP) and two Chlorella vulgaris-derived hydrochars that employ water (CVHW) or citrate acid solution (CVHCA) as the reaction medium were applied to a soil column system grown with rice. The temporal variations of nitrous oxide (N2O) emissions and ammonia (NH3) volatilization were monitored during the whole rice-growing season. Results showed that CVHW and CVHCA addition significantly increased the grain yield (by 13.5-26.8% and 10.5-23.4%) compared with control and CVP group, while concomitantly increasing the ammonia volatilization (by 53.8% and 72.9%) as well as N2O emissions (by 2.17- and 2.82-fold) from paddy soil compared to control. The microbial functional genes (AOA, AOB, nirk, nirS, nosZ) in soil indicated that CVHW and CVHCA treatment stimulated the nitrification and denitrification, and inhibited the N2O oxidation in soil. Notably, CVHW was recommended in the view of improving yield and controlling NH3 volatilization because no significant difference of the yield-scale NH3 volatilization was detected between control and CVHW treatment. This study for the first time uncovered that Chlorella vulgaris-derived hydrochars have positive effects on rice N utilization and growth but negative effects on the atmospheric environment.


Assuntos
Chlorella vulgaris , Microalgas , Oryza , Amônia , Fertilizantes , Gases , Nitrogênio , Óxido Nitroso , Solo , Microbiologia do Solo
14.
Huan Jing Ke Xue ; 40(8): 3746-3752, 2019 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854784

RESUMO

Nitrification inhibitor and biochar are commonly used as soil synergists. Among them, nitrification inhibitor can increase crop yields and N use efficiency, while biochar is a relatively new way of using biomass resources and has certain adsorption characteristics. In order to reduce nitrogen loss and environmental pollution caused by ammonia volatilization in paddy fields, a pot experiment with chemical fertilizer application (CN) as a control was conducted to study the effects of biochar (B), nitrapyrin (CP), and compound application (BCP) on pH, NH4+-N concentration dynamics in the flood water, rice yields, and ammonia volatilization from paddy fields. The results showed that the application of these two synergists had no significant effect on rice yields, and the nitrification inhibitors had a tendency to increase rice yields. The two synergists significantly increased ammonia volatilization from paddy fields, accounting for 25%-35% of the total N rate. Ammonia volatilization during periods of fertilizer application accounted for 86%-91% of the total loss, representing the main period of ammonia volatilization. Compared with the CN treatment, the CP treatment increased NH4+-N concentrations in flood water and the loss of ammonia via volatilization, which was increased by 59.18% and mainly occurred during a week after the basal fertilization(138%) and spike fertilization (48%), and non-fertilization stage (78%). Biochar had a promoting effect on ammonia volatilization with typically phased characteristics. The initial increasing effect of biochar on ammonia volatilization was higher than during the later stages, when NH4+-N concentrations and the pH of flood water showed the same trend. In addition, the coupling of nitrification inhibitor and biochar significantly increased the total loss of ammonia via volatilization loss due to the promotion effect of CP and B. The problem of increased ammonia volatilization loss caused by the application of nitrification inhibitors requires further research.

15.
Front Chem ; 6: 219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946540

RESUMO

Photocatalytic removal of ammonium-nitrogen ( NH4+ -N) from water using solar energy is an approach of high interest and applicability due to the convenience in application. ZnO has a great potential in photocatalytic decomposition of NH4+ -N and conversion of this nutrient to under visible light irradiations. However the applicability of pristine ZnO though is limited due to its reduced capacity to utilize light from natural light. Herein, we report a two-step ZnO-modified strategy (Cu-doped ZnO nanoparticles, immobilized on reduced graphene oxide (rGO) sheets) for the promotion of photocatalytic degradation of NH4+ -N under visible light. UV-Vis spectra showed that the Cu/ZnO/rGO can be highly efficient in the utilization of photons from the visible region. Hence, Cu/ZnO/rGO managed to demonstrate adequate photocatalytic activity and effective NH4+ -N removal from water under visible light compared to single ZnO. Specifically, up to 83.1% of NH4+ -N (initial concentration 50 mg·L-1, catalyst dosage 2 g·L-1, pH 10) was removed within 2 h retention time under Xe lamp irradiation. From the catalysis, the major by-product was N2. The high ammonia degradation efficiency from the ZnO/Cu/rGO is attributed to the improvement of the reactive oxygen species (ROSs) production efficiency and the further activation of the interfacial catalytic sites. This study also demonstrated that such nanocomposite is a recyclable agent. Its NH4+ -N removal capacity remained effective even after five batch cycles. In addition, Cu/ZnO/rGO was applied to treat real domestic wastewater, and it was found that chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal efficiencies can reach 84.3, 80.7, and 90.3%, respectively. Thus, Cu/ZnO/rGO in the presence of solar light can be a promising photocatalyst in the field of wastewater treatment.

16.
Huan Jing Ke Xue ; 39(11): 5170-5179, 2018 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628242

RESUMO

Building a nutrient channel between eutrophic water and agricultural fields could reduce nutrient input into fields and alleviate eutrophication by returning nitrogen. In order to determine the feasibility of returning nitrogen by biochar loading, a rhizobox experiment was conducted with two nitrogen applied methods, namely SN (applied nitrogen by nitrogen fertilizer solution) and BN (applied nitrogen by nitrogen-loaded biochar). The results showed that BN, in comparison with SN, decreased the biomass and nitrogen uptake of the aboveground paddy by 16% and 14%, respectively, increased biomass root-shoot ratios by 25%-27%, and reduced nitrogen recovery use efficiency. Two nitrogen application methods affected the length and volume of paddy adventitious roots. Paddy underground biomass and nitrogen uptake were positively correlated with soil ammonium content, whereas paddy aboveground nitrogen uptake was negatively correlated with root tips. It was suggested that the paddy biomass and nitrogen uptake would be influenced when nitrogen was applied solely by nitrogen-loaded biochar. However, no affinity and no significance in nitrogen use efficiency were found for plant uptake between chemical nitrogen and biochar-loaded nitrogen. Additionally, biochar promoted soil mineral nitrogen content for further plant uptake. Therefore, biochar could be used as the carrier for returning nitrogen from waterbodies to fields. The replacement rate of chemical nitrogen fertilizer is the key to influencing plant growth and needs future study.


Assuntos
Carvão Vegetal , Fertilizantes , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Solo/química
17.
Huan Jing Ke Xue ; 38(12): 5326-5332, 2017 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964597

RESUMO

In order to reduce the ammonia volatilization in paddy fields, seven treatments were evaluated. These included three slow-release nitrogen fertilizers[sulfur-coated urea (SCU); resin-coated urea (RCU); release bulk blending fertilizer (RBB)], two fertilization modes[single base fertilization (B) and combined with panicle fertilizer (BF)], and conventional split fertilization (CN). The effects of side deep fertilization for slow-release nitrogen fertilizers on ammonia volatilization and surface water nitrogen dynamics were examined using a rice transplanter with a fertilizer sowing mechanism in the Taihu Lake region. The results showed that total nitrogen and ammonium nitrogen concentration in the surface water of the SCU treatment in the base period were higher, and those for RCU and RBB were lower than in the CN treatment. The cumulative ammonia volatilization during the whole rice season varied among different types of slow-release nitrogen fertilizers from 3.84% to 28.17% of the total N applied. The nitrogen loss from ammonia volatilization using the three slow-release nitrogen fertilizers was decreased when compared with conventional split fertilization. The ammonia volatilization loss exhibited the following relationship for the treatments:CN, B-SCU > BF-SCU, BF-RBB, BF-RCU, B-RBB, and B-RCU. When the slow-release nitrogen fertilizers were applied in single base fertilization, the total ammonia volatilization for the SCU was significantly higher than those for the RCU and RBB, while no significant differences were detected when these three slow-release fertilizers were combined with panicle fertilizer. Moreover, although the ammonia volatilization of BF-SCU was lower than that of B-SCU, those of BF-RCU and BF-RBB were higher than those with the B-RCU and B-RBB treatments, respectively. There are no significant differences for nitrogen volatilization when any of these three different fertilizers are applied as B or BF. The results for the emissions during ammonia volatilization during different stages indicated that the ammonia volatilization of SCU at the basal-tillering fertilization stage (7.54%) and the tillering-panicle fertilization stage (16.04%) were higher than those of the panicle fertilization-mature stage. The N loss from ammonia volatilization for RBB in the base-tillering fertilization stage (2.91%) increased more than in the tillering-panicle fertilization stage and panicle fertilization-mature stage. For RCU treatment, the highest rate for ammonia volatilization was detected at the panicle fertilization-mature stage (2.75%). Compared with the single base fertilization mode, ammonia volatilization during the panicle fertilization-mature stage was increased when combined with panicle fertilizer (BF) for the slow-release fertilizer. There was no obvious correlation between the N loss with ammonia volatilization for the three slow-release nitrogen fertilizers and the concentration of ammonium nitrogen in surface water during the panicle fertilization-mature stage.


Assuntos
Amônia/metabolismo , Fertilizantes , Oryza/metabolismo , Solo/química , Agricultura , Nitrogênio , Volatilização
18.
Huan Jing Ke Xue ; 37(10): 3963-3970, 2016 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964433

RESUMO

A pot experiment was conducted to study the effect of straw returning and domestic sewage irrigation on the dynamics of NH4+-N concentration and pH in the flood water, and ammonia volatilization of paddy fields. The results showed that the NH4+-N concentration in flood water was significantly increased by wheat straw returning while significantly decreased by domestic sewage irrigation. The cumulative ammonia volatilization in the whole rice season under tap water irrigation and straw removal treatment was 58.29 kg·hm-2, accounting for 24.29% of the total N applied. The N loss ratio of ammonia volatilization was significantly increased to 45.66% by wheat straw returning, while significantly decreased to 17.26% under straw removal and 32.72% under straw returning by domestic sewage irrigation. Significant positive interaction was observed between straw incorporation and domestic sewage irrigation on ammonia volatilization loss. The average N loss from ammonia volatilization during the tillering stage was the highest among the three fertilization stages, accounting for 7.38%-24.44% of the total N applied. In addition, ammonia volatilization fluxes showed a significant positive correlation with the flood water NH4+-N concentration, irrespective of the irrigation water, but had no significant correlation with pH. These results indicated that straw returning increased ammonia volatilization losses, whereas domestic sewage irrigation could effectively reduce ammonia volatilization losses and simultaneously replace 44.41% of chemical nitrogen fertilizer by the N contained in the domestic sewage. The combination of domestic sewage irrigation and straw returning would be an ecological and environmental-friendly measure for rice nitrogen management in Taihu Lake region.


Assuntos
Irrigação Agrícola , Amônia/química , Esgotos , Volatilização , Poluentes Químicos da Água/química , Fertilizantes , Nitrogênio , Oryza , Caules de Planta , Solo
19.
J Environ Sci (China) ; 25(9): 1874-81, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24520731

RESUMO

A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat on methane (CH4) emissions from rice fields in which, the rice-wheat rotation system is the most dominant planting pattern. The field experiment was initiated in October 2009 and has continued since the wheat-growing season of that year. The analyses for the present study were conducted in the second (2011) and third (2012) rice growing seasons. Four treatments, namely, the continuous return of wheat straw and rice straw in every season (WR), of rice straw but no wheat straw return (R), of wheat straw but no rice straw return (W) and a control with no straw return (CK), were laid out in a randomized split-plot design. The total seasonal CH4 emissions ranged from 107.4 to 491.7 kg/ha (2011) and 160.3 to 909.6 kg/ha (2012). The increase in CH4 emissions for treatments WR and W were 289% and 230% in the second year and 185% and 225% in the third year, respectively, in relation to CK. We observed less methane emissions in the treatment R than in CK by 14%-43%, but not statistically significant. Treatment R could increase rice productivity while no more CH4 emission occurs. The difference in the total CH4 emissions mainly related to a difference in the methane flux rate during the first 30-35 days after transplant in the rice growing season, which was caused by the amount of dissolved oxygen in paddy water and the amount of reducible soil materials.


Assuntos
Metano/análise , Oryza/química , China , Oxirredução , Oxigênio/análise , Estações do Ano , Solo/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA