RESUMO
Human ABC transporters ABCD1-3 are all localized on the peroxisomal membrane and participate in the ß-oxidation of fatty acyl-CoAs, but they differ from each other in substrate specificity. The transport of branched-chain fatty acids from cytosol to peroxisome is specifically driven by ABCD3, dysfunction of which causes severe liver diseases such as hepatosplenomegaly. Here we report two cryogenic electron microscopy (cryo-EM) structures of ABCD3 bound to phytanoyl-CoA and ATP at resolutions of 2.9 Å and 3.2 Å, respectively. A pair of phytanoyl-CoA molecules were observed in ABCD3, each binding to one transmembrane domain (TMD), which is distinct from our previously reported structure of ABCD1, where each fatty acyl-CoA molecule strongly crosslinks two TMDs. Upon ATP binding, ABCD3 exhibits a conformation that is open towards the peroxisomal matrix, leaving two extra densities corresponding to two CoA molecules deeply embedded in the translocation cavity. Structural analysis combined with substrate-stimulated ATPase activity assays indicated that the present structures might represent two states of ABCD3 in the transport cycle. These findings advance our understanding of fatty acid oxidation and the molecular pathology of related diseases.
RESUMO
Tin (Sn) metal has emerged as a promising anode for aqueous batteries, due to its high capacity, non-toxicity, and cost-effectiveness. However, Sn metal has often been coupled with strong and corrosive sulfuric acids (2-3 M), leading to severe electrode corrosion and hydrogen evolution issues. Although high efficiency and long cycling were reported, the results were achieved using high currents to kinetically mask electrode-electrolyte side reactions. Herein, we introduce a low-acidity tin chloride electrolyte (pH=1.09) as a more viable option, which eliminates the need of strong acids and enables a reversible dendrite-free Sn plating chemistry. Remarkably, the plating efficiency approaches unity (99.97%) under standard testing conditions (1 mA cm-2 for 1 mAh cm-2), which maintains high at 99.23-99.93% across various aggressive conditions, including low current (0.1-0.25 mA cm-2), high capacity (5-10 mAh cm-2), and extended resting time (24-72 hours). The battery calendar life is further prolonged to 3064 hours, significantly surpassing literature reports. Additionally, we presented an effective method to mitigate the potential Sn2+ oxidization issue on the cathode, demonstrating long-cycling Sn||LiMn2O4 hybrid batteries. This work offers critical insights for developing highly reversible Sn metal batteries.
RESUMO
A novel double-shelled CuS/CdIn2S4 photocatalyst was rationally designed using CdIn2S4 sheets in situ grown upon the exterior of hollow CuS nanocubes. The unique hierarchical hollow structure of CuS/CdIn2S4 provides numerous active sites and reduces carrier diffusion length. Surface sulfur vacancies mitigate the detachment of the intermediate, which is favorable for a multi-electron reaction path such as that in the production of CH4. Meanwhile, a suitable band-structure alignment between p-type CuS and n-type CdIn2S4 leads to the formation of a type-II heterostructure, thus resulting in effective light-harvesting and spatial separation of electron-hole pairs for CO2 photoreduction. The CuS/CdIn2S4 heterostructure exhibits significantly enhanced performance with a boosted CO yield of 40.73 µmol g-1 h-1 as well as a noticeably improved CH4 selectivity (36.5%, 23.41 µmol g-1 h-1). This work introduces innovative concepts in designing photocatalytic systems with unique morphologies and rational band structures, promising advancements in CO2 photoreduction at reduced costs.
RESUMO
The fundamental function of an optimal cervical pillow is to provide sufficient support to maintain normal spinal alignment and minimize biological stress on the contact surface throughout sleep. The recent advancements in cervical pillows have mainly focused on the subjective and objective evaluations of support comfort, as well as the relationship between pillow height and cervical vertebrae posture. However, only a few studies have addressed shape design guidelines and mechanical performances of the pillows themselves. In this study, a two-sectional contour cervical pillow comprising an arc and a Bezier curve is designed to support the head and neck. The design of the arc-shaped neck section incorporates the Cobb's angle and Borden value from healthy individuals to reflect the consistency of normal cervical anatomical features. The Bezier curve-based head section takes the head length and neck depth into account as significant individual differences. Static analysis and lattice optimization are performed in ANSYS Workbench to develop a variable-density cellular structure, aimed at improving air permeability and reducing the risk of pressure ulcers associated with the cervical pillow. The rapid prototyping technique fused deposition modeling (FDM) and thermoplastic material polylactic acid (PLA) are employed for fabricating different cellular structures. The results demonstrate that the neck section experiences less stress and greater deformation in comparison to the head section, indicating good comfort and support provided by the designed cervical pillow. Additionally, the compressive, bending, and cushion properties of the 3D-printed cervical pillow with variable-density cellular structure are experimentally validated, further confirming its effectiveness.
RESUMO
With the continuous advancement of wearable technology and advanced medical monitoring, there is an increasing demand for electronic devices that can adapt to complex environments and have high perceptual sensitivity. Here, a novel artificial injury perception device based on an Ag/HfOx/ITO/PET flexible memristor is designed to address the limitations of current technologies in multimodal perception and environmental adaptability. The memristor exhibits excellent resistive switching (RS) performance and mechanical flexibility under different bending angles (BAs), temperatures, humid environment, and repetitive folding conditions. Further, the device demonstrates the multimodal perception and conversion capabilities toward voltage, mechanical, and thermal stimuli through current response tests under different conditions, enabling not only the simulation of artificial injury perception but also holds promise for monitoring and controlling the movement of robotic arms. Moreover, the logical operation capability of the memristor-based reconfigurable logic (MRL) gates is also demonstrated, proving the device has great potential applications with sensing, storage, and memory functions. Overall, this study not only provides a direction for the development of the next-generation flexible multimodal sensors, but also has significant implications for technological advancements in many fields such as robotic arms, electronic skin (e-skin), and medical monitoring.
RESUMO
Vascularization plays a significant role in promoting the expedited process of bone regeneration while also enhancing the stability and viability of artificial bone implants. Although titanium alloy scaffolds were designed to mimic the porous structure of human bone tissues to facilitate vascularization in bone repair, their biological inertness restricted their broader utilization. The unique attribute of Metal-organic framework (MOF) MIL-53(Fe), known as "breathing", can facilitate the efficient adsorption of extracellular matrix proteins and thus provide the possibility for efficient interaction between scaffolds and cell adhesion molecules, which helps improve the bioactivity of the titanium alloy scaffolds. In this study, MIL-53(Fe) was synthesized in situ on the scaffold after hydrothermal treatment. The MIL-53(Fe) endowed the scaffold with superior protein absorption ability and preferable biocompatibility. The scaffolds have been shown to possess favorable osteogenesis and angiogenesis inducibility. It was indicated that MIL-53(Fe) modulated the mechanotransduction process of endothelial cells and induced increased cell stiffness by promoting the adsorption of adhesion-mediating extracellular matrix proteins to the scaffold, such as laminin, fibronectin, and perlecan et al., which contributed to the activation of the endothelial tip cell phenotype at sprouting angiogenesis. Therefore, this study effectively leveraged the intrinsic "breathing" properties of MIL-53 (Fe) to enhance the interaction between titanium alloy scaffolds and vascular endothelial cells, thereby facilitating the vascularization inducibility of the scaffold, particularly during the sprouting angiogenesis phase. This study indicates that MIL-53(Fe) coating represents a promising strategy to facilitate accelerated and sufficient vascularization and uncovers the scaffold-vessel interaction from a biomechanical perspective.
Assuntos
Neovascularização Fisiológica , Alicerces Teciduais , Titânio , Titânio/química , Humanos , Alicerces Teciduais/química , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Ligas/química , Células Endoteliais da Veia Umbilical Humana , Próteses e Implantes , Mecanotransdução Celular , Adesão Celular/efeitos dos fármacos , Engenharia Tecidual/métodosRESUMO
Sulfur holds immense promise for battery applications owing to its abundant availability, low cost, and high capacity. Currently, sulfur is commonly combined with alkali or alkaline earth metals in metal-sulfur batteries. However, these batteries universally face challenges in cycling stability due to the inevitable issue of polysulfide dissolution and shuttling. Additionally, the inferior stability of metal sulfide discharge compounds results in low S0/S2- redox potentials (<-0.41 V vs SHE). Herein, we leverage the principle of the hard-soft acid-base theory to introduce a novel silver-sulfur (Ag-S) battery system, which operates on the reaction between the soft acid of Ag+ and the soft base of S2-. Due to their high reaction affinity, the discharge compound of silver sulfide (Ag2S) is intrinsically insoluble and fundamentally stable. This not only resolves the polysulfide dissolution issue but also leads to a predominantly high S0/S2- redox potential (+1.0 V vs. SHE). We thus exploit the Ag-S reaction for a primary zinc battery application, which exhibits a high capacity of â¼620 mAh g-1 and a high voltage of â¼1.45 V. This work offers valuable insights into the application of classic chemistry theories in the development of innovative energy storage devices.
RESUMO
Repair of large bone defects remains challenge for orthopedic clinical treatment. Porous titanium alloys have been widely fabricated by the additive manufacturing, which possess the elastic modulus close to that of human cortical bone, good osteoconductivity and osteointegration. However, insufficient bone regeneration and vascularization inside the porous titanium scaffolds severely limit their capability for repair of large-size bone defects. Therefore, it is crucially important to improve the osteogenic function and vascularization of the titanium scaffolds. Herein, methacrylated gelatin (GelMA) were incorporated with the porous Ti-24Nb-4Zr-8Sn (Ti2448) scaffolds prepared by the electron beam melting (EBM) method (Ti2448-GelMA). Besides, the deferoxamine (DFO) as an angiogenic agent was doped into the Ti2448-GelMA scaffold (Ti2448-GelMA/DFO), in order to promote vascularization. The results indicate that GelMA can fully infiltrate into the pores of Ti2448 scaffolds with porous cross-linked network (average pore size: 120.2 ± 25.1 µm). Ti2448-GelMA scaffolds facilitated the differentiation of MC3T3-E1 cells by promoting the ALP expression and mineralization, with the amount of calcium contents â¼2.5 times at day 14, compared with the Ti2448 scaffolds. Impressively, the number of vascular meshes for the Ti2448-GelMA/DFO group (â¼7.2/mm2) was significantly higher than the control group (â¼5.3/mm2) after cultivation for 9 h, demonstrating the excellent angiogenesis ability. The Ti2448-GelMA/DFO scaffolds also exhibited sustained release of DFO, with a cumulative release of 82.3% after 28 days. Therefore, Ti2448-GelMA/DFO scaffolds likely provide a new strategy to improve the osteogenesis and angiogenesis for repair of large bone defects.
RESUMO
Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.
Assuntos
Cianobactérias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Alostérica , Microscopia Crioeletrônica , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismoRESUMO
The electrolyte concentration not only impacts the battery performance but also affects the battery cost and manufacturing. Currently, most studies focus on high-concentration (>3â M) or localized high-concentration electrolytes (~1â M); however, the expensive lithium salt imposes a major concern. Most recently, ultralow concentration electrolytes (<0.3â M) have emerged as intriguing alternatives for battery applications, which feature low cost, low viscosity, and extreme-temperature operation. However, at such an early development stage, many works are urgently needed to further understand the electrolyte properties. Herein, we introduce an ultralow concentration electrolyte of 2â wt % (0.16â M) lithium difluoro(oxalato)borate (LiDFOB) in standard carbonate solvents. This electrolyte exhibits a record-low salt/solvent mass ratio reported to date, thus pointing to a superior low cost. Furthermore, this electrolyte is highly compatible with commercial Li-ion materials, forming stable and inorganic-rich interphases on the lithium cobalt oxide (LiCoO2) cathode and graphite anode. Consequently, the LiCoO2-graphite full cell demonstrates excellent cycling performance. Besides, this electrolyte is moisture-resistant and effectively suppresses the generation of hydrogen fluoride, which will markedly facilitate the battery assembly and recycling process under ambient conditions.
RESUMO
Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.
Assuntos
Bilirrubina , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismoRESUMO
This paper presents a coding scheme based on bilayer low-density parity-check (LDPC) codes for multi-level cell (MLC) NAND flash memory. The main feature of the proposed scheme is that it exploits the asymmetric properties of an MLC flash channel and stores the extra parity-check bits in the lower page, which are activated only after the decoding failure of the upper page. To further improve the performance of the error correction, a perturbation process based on the genetic algorithm (GA) is incorporated into the decoding process of the proposed coding scheme, which can convert uncorrectable read sequences into error-correctable regions of the corresponding decoding space by introducing GA-trained noises. The perturbation decoding process is particularly efficient at low program-and-erase (P/E) cycle regions. The simulation results suggest that the proposed bilayer LDPC coding scheme can extend the lifetime of MLC NAND flash memory up to 10,000 P/E cycles. The proposed scheme can achieve a better balance between performance and complexity than traditional single LDPC coding schemes. All of these findings indicate that the proposed coding scheme is suitable for practical purposes in MLC NAND flash memory.
RESUMO
Biomaterial scaffolds, including bone substitutes, have evolved from being primarily a biologically passive structural element to one in which material properties such as surface topography and chemistry actively direct bone regeneration by influencing stem cells and the immune microenvironment. Ti-6Al-4V(Ti6Al4V) implants, with a significantly higher elastic modulus than human bone, may lead to stress shielding, necessitating improved stability at the bone-titanium alloy implant interface. Ti-24Nb-4Zr-8Sn (Ti2448), a low elastic modulus ß-type titanium alloy devoid of potentially toxic elements, was utilized in this study. We employed 3D printing technology to fabricate a porous scaffold structure to further decrease the structural stiffness of the implant to approximate that of cancellous bone. Microarc oxidation (MAO) surface modification technology is then employed to create a microporous structure and a hydrophilic oxide ceramic layer on the surface and interior of the scaffold. In vitro studies demonstrated that MAO treatment enhances the proliferation, adhesion, and osteogenesis capabilities on the scaffold surface. The chemical composition of the MAO-Ti2448 oxide layer is found to enhance the transcription and expression of osteogenic genes in bone mesenchymal stem cells (BMSCs), potentially related to the enrichment of Nb2O5 and SnO2 in the oxide layer. The MAO-Ti2448 scaffold, with its synergistic surface activity and low stiffness, significantly activates the anti-inflammatory macrophage phenotype, creating an immune microenvironment that promotes the osteogenic differentiation of BMSCs. In vivo experiments in a rabbit model demonstrated a significant improvement in the quantity and quality of the newly formed bone trabeculae within the scaffold under the contact osteogenesis pattern with a matched elastic modulus. These trabeculae exhibit robust connections to the external structure of the scaffold, accelerating the formation of an interlocking structure between the bone and implant and providing higher implantation stability. These findings suggest that the MAO-Ti2448 scaffold has significant potential as a bone defect repair material by regulating osteoimmunomodulation and osteogenesis to enhance osseointegration. This study demonstrates an optional strategy that combines the mechanism of reducing the elastic modulus with surface modification treatment, thereby extending the application scope of ß-type titanium alloy.
Assuntos
Osseointegração , Osteogênese , Animais , Humanos , Coelhos , Módulo de Elasticidade , Titânio/farmacologia , Ligas/farmacologia , Ligas/química , Óxidos , Impressão Tridimensional , Propriedades de SuperfícieRESUMO
One-unit-cell, single-crystal, hexagonal CuInP2 S6 atomically thin sheets of≈0.81â nm in thickness was successfully synthesized for photocatalytic reduction of CO2 . Exciting ethene (C2 H4 ) as the main product was dominantly generated with the yield-based selectivity reaching ≈56.4 %, and the electron-based selectivity as high as ≈74.6 %. The tandem synergistic effect of charge-enriched Cu-In dual sites confined on the lateral edge of the CuInP2 S6 monolayer (ML) is mainly responsible for efficient conversion and high selectivity of the C2 H4 product as the basal surface site of the ML, exposing S atoms, can not derive the CO2 photoreduction due to the high energy barrier for the proton-coupled electron transfer of CO2 into *COOH. The marginal In site of the ML preeminently targets CO2 conversion to *CO under light illumination, and the *CO then migrates to the neighbor Cu sites for the subsequent C-C coupling reaction into C2 H4 with thermodynamic and kinetic feasibility. Moreover, ultrathin structure of the ML also allows to shorten the transfer distance of charge carriers from the interior onto the surface, thus inhibiting electron-hole recombination and enabling more electrons to survive and accumulate on the exposed active sites for CO2 reduction.
RESUMO
The significance of the osteogenesis-angiogenesis relationship in the healing process of bone defects has been increasingly emphasized in recent academic research. Surface topography plays a crucial role in guiding cellular behaviors. Metal-organic framework (MOF) is an innovative biomaterial with nanoscale structural and topological features, enabling the modulation of scaffold physicochemical properties. This study involved the loading of varying quantities of UiO-66 nanocrystals onto alkali-heat treated 3D-printed titanium scaffolds, resulting in the formation of hierarchical micro/nano topography named UiO-66/AHTs. The physicochemical properties of these scaffolds were subsequently characterized. Furthermore, the impact of these scaffolds on the osteogenic potential of BMSCs, the angiogenic potential of HUVECs, and their intercellular communication were investigated. The findings of this study indicated that 1/2UiO-66/AHT outperformed other groups in terms of osteogenic and angiogenic induction, as well as in promoting intercellular crosstalk by enhancing paracrine effects. These results suggest a promising biomimetic hierarchical topography design that facilitates the coupling of osteogenesis and angiogenesis.
RESUMO
The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones ß-estradiol 17-(ß-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Estradiol , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Estradiol/farmacologia , Estradiol/metabolismo , Mutagênese Sítio-DirigidaRESUMO
Titanium alloy scaffolds with a porous structure have attracted much attention in bone defect repair. However, which pore structure is more beneficial to bone defect repair is controversial. In the present research, the Ti6Al4V alloy porous scaffolds with gradient pore sizes were designed and fabricated. The microstructure characterization, tests of mechanical properties, and in vitro and in vivo experiments have been performed to systematically evaluate the effect of pore size on osteoinduction and osteogenesis. The results revealed that the contact angle with water, compressive strength, and elastic modulus of the Ti6Al4V alloy porous scaffolds decreased gradually with the increase of pore size. However, there were obvious drops when the pore size of the porous scaffold was around 600 µm. As the pore size increased, the proliferation and integrin ß1 of RAW 264.7 macrophages seeded on Ti6Al4V alloy porous scaffolds increased at first, reaching a maximum value at a pore size of around 600 µm, and then decreased subsequently. The proliferation, integrin ß1, and osteogenic gene-related expressions of Bone marrow mesenchymal stem cells (BMSCs) seeded on Ti6Al4V alloy porous scaffolds with different pore sizes all exhibited similar variations which rose with increased pore size firstly, obtaining the maximum value at pore size about 600 µm, and then declined. The in vivo experiments confirmed the in vitro results, and the Ti6Al4V alloy porous scaffold with a pore size of 600 µm possessed the better capability to induce new bone formation. Therefore, for the design of Ti6Al4V alloy with a regular porous scaffold, the surface morphology, porosity, strength, and elastic modulus should be considered systematically, which would determine the capability of osteoinduction and osteogenesis.
RESUMO
This study aims to explore the effects of acute high-frequency repetitive transcranial magnetic stimulation (hf-rTMS) on neuronal excitability of granule cells in the hippocampal dentate gyrus, as well as the underlying intrinsic mediating mechanisms by which rTMS regulates neuronal excitability. First, high-frequency single TMS was used to measure the motor threshold (MT) of mice. Then, rTMS with different intensities of 0 MT (control), 0.8 MT, and 1.2 MT were applied to acute mice brain slices. Next, patch-clamp technique was used to record the resting membrane potential and evoked nerve discharge of granule cells, as well as the voltage-gated sodium current (I Na) of voltage-gated sodium channels (VGSCs), transient outward potassium current (I A) and delayed rectifier potassium current (I K) of voltage-gated potassium channels (Kv). Results showed that acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly activated I Na and inhibited I A and I K compared with control group, due to the changes of dynamic characteristics of VGSCs and Kv. Acute hf-rTMS in both 0.8 MT and 1.2 MT groups significantly increased membrane potential and nerve discharge frequency. Therefore, changing dynamic characteristics of VGSCs and Kv, activating I Na and inhibiting I A and I K might be one of the intrinsic mediating mechanisms by which rTMS enhanced the neuronal excitability of granular cells, and this regulatory effect increased with the increase of stimulus intensity.
RESUMO
We report on diode-pumped continuous wave and passively Q switched Er:GdScO3 crystal lasers at around 2.8â µm. A continuous wave output power of 579â mW was obtained with a slope efficiency of 16.6%. Using Fe:ZnSe as a saturable absorber, a passively Q switched laser operation was realized. A maximum output power of 32â mW was generated with the shortest pulse duration of 286â ns at a repetition rate of 157.3 kHz, leading to a pulse energy of 204 nJ and a pulse peak power of 0.7 W.
RESUMO
Weightlessness in the space environment affects astronauts' learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.