RESUMO
Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics. However, developing an evaporator with high efficiency, stability, and salt resistance remains a key challenge. MXene, with an internal photothermal conversion efficiency of 100%, has received tremendous research interest as a photothermal material. However, the process to prepare the MXene with monolayer is inefficient and generates a large amount of "waste" MXene sediments (MS). Here, MXene sediments is selected as the photothermal material, and a three-dimensional MXene sediments/poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned pores by directional freezing method is innovatively designed. The vertical porous structure enables the evaporator to improve water transport, light capture, and high evaporation rate. Cotton swabs and polypropylene are used as the water channel and support, respectively, thus fabricating a self-floating evaporator. The evaporator exhibits an evaporation rate of 3.6 kg m-2 h-1 under one-sun illumination, and 18.37 kg m-2 of freshwater is collected in the condensation collection device after 7 h of outdoor sun irradiation. The evaporator also displays excellent oil and salt resistance. This research fully utilizes "waste" MS, enabling a self-floating evaporation device for freshwater collection.
RESUMO
BACKGROUND: The early Cambrian arthropod clade Megacheira, also referred to as great appendage arthropods, comprised a group of diminutive and elongated predators during the early Palaeozoic era, around 518 million years ago. In addition to those identified in the mid-Cambrian Burgess Shale biota, numerous species are documented in the renowned 518-million-year-old Chengjiang biota of South China. Notably, one species, Tanglangia longicaudata, has remained inadequately understood due to limited available material and technological constraints. In this study, we, for the first time, examined eight fossil specimens (six individuals) utilizing state-of-the-art µCT and computer-based 3D rendering techniques to unveil the hitherto hidden ventral and appendicular morphology of this species. RESULTS: We have identified a set of slender endopodites gradually narrowing distally, along with a leaf-shaped exopodite adorned with fringed setae along its margins, and a small putative exite attached to the basipodite. Our techniques have further revealed the presence of four pairs of biramous appendages in the head, aligning with the recently reported six-segmented head in other early euarthropods. Additionally, we have discerned two peduncle elements for the great appendage. These findings underscore that, despite the morphological diversity observed in early euarthropods, there exists similarity in appendicular morphology across various groups. In addition, we critically examine the existing literature on this taxon, disentangling previous mislabelings, mentions, descriptions, and, most importantly, illustrations. CONCLUSIONS: The µCT-based investigation of fossil material of Tanglangia longicaudata, a distinctive early Cambrian euarthropod from the renowned Chengjiang biota, enhances our comprehensive understanding of the evolutionary morphology of the Megacheira. Its overall morphological features, including large cup-shaped eyes, raptorial great appendages, and a remarkably elongated telson, suggest its potential ecological role as a crepuscular predator and adept swimmer in turbid waters.
Assuntos
Artrópodes , Fósseis , Animais , Fósseis/anatomia & histologia , Artrópodes/anatomia & histologia , China , Evolução Biológica , Biota , Microtomografia por Raio-XRESUMO
Pectocaris species are intermediate- to large-sized Cambrian bivalved arthropods. Previous studies have documented Pectocaris exclusively from the Cambrian Series 2 Stage 3 Chengjiang biota in Yu'anshan Formation, Chiungchussu Stage in SW China. In this study, we report Pectocaris paraspatiosa sp. nov., and three other previously known Pectocaris from the Xiazhuang section in Kunming, which belongs to the Hongjingshao Formation and is a later phase within Cambrian Stage 3 than the Yu'anshan Formation. The new species can be distinguished from its congeners by the sparsely arranged endopodal endites and the morphologies of the abdomen, telson, and telson processes. We interpret P. paraspatiosa sp. nov. as a filter-feeder and a powerful swimmer adapted to shallow, agitated environments. Comparison among the Pectocaris species reinforces previous views that niche differentiation had been established among the congeneric species based on morphological differentiation. Our study shows the comprehensive occurrences of Pectocaris species outside the Chengjiang biota for the first time. With a review of the shared fossil taxa of Chengjiang and Xiaoshiba biotas, we identify a strong biological connection between the Yu'anshan and Hongjingshao Formations.
Assuntos
Artrópodes , Bivalves , Animais , Artrópodes/anatomia & histologia , Fósseis , China , BiotaRESUMO
The early Cambrian Kylinxia zhangi occupies a pivotal position in arthropod evolution, branching from the euarthropod stem lineage between radiodonts (Anomalocaris and relatives) and "great-appendage" arthropods.1,2 Its combination of appendage and exoskeletal features is viewed as uniquely bridging the morphologies of so-called "lower" and "upper" stem-group euarthropods.3,4 Microtomographic study of new specimens of Kylinxia refines and corrects previous interpretation of head structures in this species. Phylogenetic analyses incorporating new data reinforce the placement of Kylinxia in the euarthropod stem group but support new hypotheses of head evolution. The head of Kylinxia is composed of six segments, as in extant mandibulates, e.g., insects.5 In Kylinxia, these are an anterior sclerite associated with an unpaired median eye and paired lateral eyes (thus three rather than five eyes as was previously described1), deutocerebral frontal-most appendages, and four pairs of biramous appendages (rather than two pairs of uniramous appendages). Phylogenetic trees suggest that a six-segmented head in the euarthropod crown group was already acquired by a common ancestor with Kylinxia. The segmental alignment and homology of spinose frontal-most appendages between radiodonts and upper stem-group euarthropods6,7,8,9,10 is bolstered by morphological similarities and inferred phylogenetic continuity between Kylinxia and other stem-group euarthropods.
Assuntos
Artrópodes , Animais , Artrópodes/anatomia & histologia , Filogenia , Cabeça/anatomia & histologia , Fósseis , Extremidades/anatomia & histologia , Evolução BiológicaRESUMO
Budd et al. challenge the identity of neural traces reported for the Cambrian lobopodian Cardiodictyon catenulum. Their argumentation is unsupported, as are objections with reference to living Onychophora that misinterpret established genomic, genetic, developmental, and neuroanatomical evidence. Instead, phylogenetic data corroborate the finding that the ancestral panarthropod head and brain is unsegmented, as in C. catenulum.
Assuntos
Artrópodes , Evolução Biológica , Encéfalo , Artrópodes/anatomia & histologia , Artrópodes/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Genômica , Filogenia , NeuroanatomiaRESUMO
Early euarthropod evolution involved a major transition from lobopodian-like taxa to organisms featuring a segmented, well-sclerotized trunk (arthrodization) and limbs (arthropodization). However, the precise origin of a completely arthrodized trunk and arthropodized ventral biramous appendages remain controversial, as well as the early onset of anterior-posterior limb differentiation in stem-group euarthropods. New fossil material and micro-computed tomography inform the detailed morphology of the arthropodized biramous appendages in the carapace-bearing euarthropod Isoxys curvirostratus from the early Cambrian Chengjiang biota. In addition to well-developed grasping frontal appendages, I. curvirostratus possesses two batches of morphologically and functionally distinct biramous limbs. The first batch consists of four pairs of short cephalic appendages with robust endites with a feeding function, whereas the second batch has more elongate trunk appendages for locomotion. Critically, our new material shows that the trunk of I. curvirostratus was not arthrodized. The results of our phylogenetic analyses recover isoxyids as some of the earliest branching sclerotized euarthropods, and strengthens the hypothesis that arthropodized biramous appendages evolved before full body arthrodization.
Assuntos
Artrópodes , Animais , Filogenia , Artrópodes/anatomia & histologia , Evolução Biológica , Microtomografia por Raio-X , Fósseis , ChinaRESUMO
For more than a century, the origin and evolution of the arthropod head and brain have eluded a unifying rationale reconciling divergent morphologies and phylogenetic relationships. Here, clarification is provided by the fossilized nervous system of the lower Cambrian lobopodian Cardiodictyon catenulum, which reveals an unsegmented head and brain comprising three cephalic domains, distinct from the metameric ventral nervous system serving its appendicular trunk. Each domain aligns with one of three components of the foregut and with a pair of head appendages. Morphological correspondences with stem group arthropods and alignments of homologous gene expression patterns with those of extant panarthropods demonstrate that cephalic domains of C. catenulum predate the evolution of the euarthropod head yet correspond to neuromeres defining brains of living chelicerates and mandibulates.
Assuntos
Artrópodes , Evolução Biológica , Encéfalo , Animais , Artrópodes/anatomia & histologia , Artrópodes/genética , Encéfalo/anatomia & histologia , Endoderma , Filogenia , Expressão Gênica , FósseisRESUMO
Among extant animals, Lophotrochozoa accounts for the majority of phyla.1 This bilaterian clade radiated rapidly during the Cambrian explosion, obfuscating its phylogenetic relationships and rendering many aspects of its early evolution uncertain. Many early lophotrochozoans are known only from isolated skeletal microfossils, "small shelly fossils," often derived from larger animals with complex multi-element skeletons.2 The discovery of articulated fossils has revealed surprising insights into the animals from which these skeletal pieces were derived, such as paired shells in the mollusc Halkieria.3 Tommotiids are a key group of phosphatic early skeletal fossils that first appear in the late early Cambrian.4,5 Although their affinities were previously obscure, discoveries of partial scleritomes and investigations of growth and microstructure6 provide links with Brachiopoda7,8 and Phoronida,9 two of the lophophorate phyla. By contrast, the body plan of camenellan tommotiids remains a palaeontological mystery, with hypothetical reconstructions representing motile, benthic, dorsally armored worms.4,10 Here, we describe an articulated camenellan (Wufengella bengtsoni gen. et sp. nov.) from the Cambrian Chengjiang Biota, China, revealing the morphology of the scleritome and the first soft tissues from an adult tommotiid. Wufengella carries two dorsal rows of sclerites in a highly asymmetric arrangement, flanked by smaller, cap-shaped sclerites. The scleritome was fringed by iterated fascicles of chaetae and two layers of flattened lobes. Phylogenetic analysis confirms that camenellans occupy a deep branch in lophophorate phylogeny, prior to the acquisition of a sessile lifestyle. Wufengella reveals direct evidence for a metameric body plan reminiscent of annelids early in the evolutionary history of lophophorates.11,12.
Assuntos
Anelídeos , Fósseis , Animais , Filogenia , Invertebrados/anatomia & histologia , Paleontologia , Anelídeos/anatomia & histologia , China , Evolução BiológicaRESUMO
The artiopodans represent a diverse group of euarthropods with a typically flattened dorsal exoskeleton that covers numerous pairs of biramous ventral appendages, and which are ubiquitous faunal components of the 518-million-year-old Chengjiang Lagerstätte in South China. Despite their abundance, several Chengjiang artiopodans remain poorly known, such as the large euarthropoda Retifacies abnormalis, Hou, Chen & Lu, 1989, which is distinguished by the presence of mesh-like ornamentation on its dorsal exoskeleton. Although only a few ventral details were described in a single study in 25 years, it has been frequently featured in phylogenetic analyses that explore the relationships between Cambrian euarthropods. Here, we employ micro-CT and fluorescent microphotography to investigate the exceptionally preserved ventral morphology of R. abnormalis and explore its phylogenetic implications through maximum parsimony and Bayesian inference. Detailed morphology revealed here better supports R. abnormalis as a sister group to the diminutive artiopod Pygmaclypeatus daziensis, also known from Chengjiang, and strengthens the close relationship of these taxa that have been suggested by previous studies as early-branching representatives of Trilobitomorpha. Cephalic appendages suggest this animal might be a scavenger, possibly feeding on soft-bodied organisms. Different pairs of pygidial appendages suggest an anamorphic post-embryonic ontogeny, which adds to the understanding of the developmental mode of Cambrian artiopods, and further supports the statement that post-hatching segment addition occurred in the ancestor of Euarthropoda.
RESUMO
The Chengjiang Biota is the earliest Phanerozoic soft-bodied fossil assemblage offering the most complete snapshot of Earth's initial diversification, the Cambrian Explosion. Although palaeobiologic aspects of this biota are well understood, the precise sedimentary environment inhabited by this biota remains debated. Herein, we examine a non-weathered core from the Yu'anshan Formation including the interval preserving the Chengjiang Biota. Our data indicate that the succession was deposited as part of a delta influenced by storm floods (i.e., produced by upstream river floods resulting from ocean storms). Most Chengjiang animals lived in an oxygen and nutrient-rich delta front environment in which unstable salinity and high sedimentation rates were the main stressors. This unexpected finding allows for sophisticated ecological comparisons with other Burgess Shale-type deposits and emphasizes that the long-held view of Burgess Shale-type faunas as snapshots of stable distal shelf and slope communities needs to be revised based on recent sedimentologic advances.
Assuntos
Biota , Fósseis , Animais , Evolução Biológica , Inundações , Minerais , RiosRESUMO
The Cambrian Stage 3 Chengjiang biota in South China is one of the most influential Konservat-Lagerstätten worldwide thanks to the fossilization of diverse non-biomineralizing organisms through pyritization. Despite their contributions to understanding the evolution of early animals, several Chengjiang species remain poorly known owing to their scarcity and/or incomplete preservation. Here, we use micro-computed tomography to reveal in detail the ventral appendage organization of the enigmatic non-trilobite artiopod Pygmaclypeatus daziensis-one of the rarest euarthropods in Chengjiang-and explore its functional ecology and broader evolutionary significance. Pygmaclypeatus daziensis possesses a set of uniramous antennae and 14 pairs of post-antennal biramous appendages, the latter of which show an unexpectedly high degree of heteronomy based on the localized differentiation of the protopodite, endopodite and exopodite along with the antero-posterior body axis. The small body size (less than 2 cm), the presence of delicate spinose endites and well-developed exopodites with multiple paddle-shaped lamellae on the appendages of P. daziensis indicate a nekto-benthic mode of life and a scavenging/detritus feeding strategy. Pygmaclypeatus daziensis shows that appendage heteronomy is phylogenetically widespread within Artiopoda-the megadiverse clade that includes trilobites and their relatives with non-biomineralizing exoskeletons-and suggests that a single exopodite lobe with paddle-like lamellae is ancestral for this clade. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.
Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Paleontologia , Microtomografia por Raio-XRESUMO
The last common ancestor of all living arthropods had biramous postantennal appendages, with an endopodite and exopodite branching off the limb base. Morphological evidence for homology of these rami between crustaceans and chelicerates has, however, been challenged by data from clonal composition and from knockout of leg patterning genes. Cambrian arthropod fossils have been cited as providing support for competing hypotheses about biramy but have shed little light on additional lateral outgrowths, known as exites. Here we draw on microtomographic imaging of the Cambrian great-appendage arthropod Leanchoilia to reveal a previously undetected exite at the base of most appendages, composed of overlapping lamellae. A morphologically similar, and we infer homologous, exite is documented in the same position in members of the trilobite-allied Artiopoda. This early Cambrian exite morphology supplements an emerging picture from gene expression that exites may have a deeper origin in arthropod phylogeny than has been appreciated.
Assuntos
Artrópodes/anatomia & histologia , Extremidades/anatomia & histologia , Fósseis , Modelos Anatômicos , Animais , Artrópodes/classificação , Evolução Biológica , Especificidade da Espécie , Microtomografia por Raio-X/métodosRESUMO
BACKGROUND: The Chengjiang biota from southwest China (518-million-years old, early Cambrian) has yielded nearly 300 species, of which more than 80 species represent early chelicerates, crustaceans and relatives. The application of µCT-techniques combined with 3D software (e.g., Drishti), has been shown to be a powerful tool in revealing and analyzing 3D features of the Chengjiang euarthropods. In order to address several open questions that remained from previous studies on the morphology of the xandarellid euarthropod Sinoburius lunaris, we reinvestigated the µCT data with Amira to obtain a different approach of visualization and to generate new volume-rendered models. Furthermore, we used Blender to design 3D models showing aspects of intraspecific variation. RESULTS: New findings are: (1) antennulae consist of additional proximal articles that have not been detected before; (2) compared to other appendages, the second post-antennular appendage has a unique shape, and its endopod is comprised of only five articles (instead of seven); (3) the pygidium bears four pairs of appendages which are observed in all specimens. On the other hand, differences between specimens also have been detected. These include the presence/absence of diplotergites resulting in different numbers of post-antennular appendages and tergites and different distances between the tip of the hypostome and the anterior margin of the head shield. CONCLUSIONS: Those new observations reveal intraspecific variation among Chengjiang euarthropods not observed before and encourage considerations about possible sexual dimorphic pairs or ontogenetic stages. Sinoburius lunaris is a variable species with respect to its morphological characters, cautioning that taxon-specific variabilities need to be considered when exploring new species.
Assuntos
Artrópodes , Fósseis , Animais , China , Extremidades/anatomia & histologia , Cabeça/anatomia & histologiaRESUMO
Understanding the functional morphology and mobility of appendages of fossil animals is important for exploring ecological traits such as feeding and locomotion. Previous work on fossils from the 518 million-year-old Chengjiang biota of China was based mainly on two-dimensional information captured from the surface of the specimens. Only recently, µCT techniques started to reveal almost the entire, though flattened and compressed, three-dimensionally preserved morphologies of the arthropods from Chengjiang. This allows more accurate work on reconstructing the possible movement of certain structures such as the appendages. Here, we present a workflow on how to reconstruct the mobility of a limb of the early Chengjiang arthropod Ercaicunia multinodosa from the famous Chinese fossil site. Based on µCT scans of the fossil, we rendered surface models of the 13th-15th right endopods using the 3D visualization and 3D-rendering software Amira. The 3D objects then were postprocessed (Collapse Hierarchy, Unify Normals) in SAP 3D Visual Enterprise Author before being imported into the 3D animation program Autodesk Maya 2020. Using the add-on tool X_ROMM in Maya, we illustrate step-by-step on how to make the articles of the limbs swing-in toward each other. Eventually, we propose several possible limb movements of E. multinodosa, which helps to understand how this early arthropod could have moved its endopods.
Assuntos
Artrópodes , Animais , Fenômenos Biomecânicos , China , Fósseis , Locomoção , Fluxo de TrabalhoRESUMO
BACKGROUND: Ecdysozoa are the moulting protostomes, including arthropods, tardigrades, and nematodes. Both the molecular and fossil records indicate that Ecdysozoa is an ancient group originating in the terminal Proterozoic, and exceptional fossil biotas show their dominance and diversity at the beginning of the Phanerozoic. However, the nature of the ecdysozoan common ancestor has been difficult to ascertain due to the extreme morphological diversity of extant Ecdysozoa, and the lack of early diverging taxa in ancient fossil biotas. RESULTS: Here we re-describe Acosmia maotiania from the early Cambrian Chengjiang Biota of Yunnan Province, China and assign it to stem group Ecdysozoa. Acosmia features a two-part body, with an anterior proboscis bearing a terminal mouth and muscular pharynx, and a posterior annulated trunk with a through gut. Morphological phylogenetic analyses of the protostomes using parsimony, maximum likelihood and Bayesian inference, with coding informed by published experimental decay studies, each placed Acosmia as sister taxon to Cycloneuralia + Panarthropoda-i.e. stem group Ecdysozoa. Ancestral state probabilities were calculated for key ecdysozoan nodes, in order to test characters inferred from fossils to be ancestral for Ecdysozoa. Results support an ancestor of crown group ecdysozoans sharing an annulated vermiform body with a terminal mouth like Acosmia, but also possessing the pharyngeal armature and circumoral structures characteristic of Cambrian cycloneuralians and lobopodians. CONCLUSIONS: Acosmia is the first taxon placed in the ecdysozoan stem group and provides a constraint to test hypotheses on the early evolution of Ecdysozoa. Our study suggests acquisition of pharyngeal armature, and therefore a change in feeding strategy (e.g. predation), may have characterised the origin and radiation of crown group ecdysozoans from Acosmia-like ancestors.
Assuntos
Fósseis , Invertebrados , Filogenia , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Teorema de Bayes , China , Invertebrados/anatomia & histologia , Invertebrados/classificação , Nematoides/anatomia & histologia , Nematoides/classificação , Tardígrados/anatomia & histologia , Tardígrados/classificaçãoRESUMO
Here, we report the earliest fossil record to our knowledge of surface fouling by aggregates of small vermiform, encrusting and annulated tubular organisms associated with a mobile, nektonic host, the enigmatic Cambrian animal Vetulicola. Our material is from the exceptionally preserved early Cambrian (Epoch 2, Age 3), Chengjiang biota of Yunnan Province, southwest China, a circa 518 million-year old marine deposit. Our data show that symbiotic fouling relationships between species formed a component of the diversification of animal-rich ecosystems near the beginning of the Phanerozoic Eon, suggesting an early escalation of intimate ecologies as part of the Cambrian animal radiation.
Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Biota/fisiologia , Simbiose/fisiologia , Animais , Organismos Aquáticos/genética , Biota/genética , China/epidemiologia , Ecossistema , Fósseis , PaleontologiaRESUMO
The phylum of annelids is one of the most disparate animal phyla and encompasses ambush predators, suspension feeders and terrestrial earthworms1. The early evolution of annelids remains obscure or controversial2,3, partly owing to discordance between molecular phylogenies and fossils2,4. Annelid fossils from the Cambrian period have morphologies that indicate epibenthic lifestyles, whereas phylogenomics recovers sessile, infaunal and tubicolous taxa as an early diverging grade5. Magelonidae and Oweniidae (Palaeoannelida1) are the sister group of all other annelids but contrast with Cambrian taxa in both lifestyle and gross morphology2,6. Here we describe a new fossil polychaete (bristle worm) from the early Cambrian Canglangpu formation7 that we name Dannychaeta tucolus, which is preserved within delicate, dwelling tubes that were originally organic. The head has a well-defined spade-shaped prostomium with elongated ventrolateral palps. The body has a wide, stout thorax and elongated abdomen with biramous parapodia with parapodial lamellae. This character combination is shared with extant Magelonidae, and phylogenetic analyses recover Dannychaeta within Palaeoannelida. To our knowledge, Dannychaeta is the oldest polychaete that unambiguously belongs to crown annelids, providing a constraint on the tempo of annelid evolution and revealing unrecognized ecological and morphological diversity in ancient annelids.
Assuntos
Fósseis , Filogenia , Poliquetos/classificação , Abdome/anatomia & histologia , Animais , China , Cabeça/anatomia & histologia , Poliquetos/anatomia & histologiaRESUMO
BACKGROUND: The Chengjiang biota is one of the most species-rich Cambrian Konservat-Lagerstätten, and preserves a community dominated by non-biomineralized euarthropods. However, several Chengjiang euarthropods have an unfamiliar morphology, are extremely rare, or incompletely preserved. RESULTS: We employed micro-computed tomography to restudy the enigmatic euarthropod Jianshania furcatus. We reveal new morphological details, and demonstrate that the specimens assigned to this species represent two different taxa. The holotype of J. furcatus features a head shield with paired anterolateral notches, stalked lateral eyes, and an articulated tailspine with a bifurcate termination. The other specimen is formally redescribed as Xiaocaris luoi gen. et sp. nov., and is characterized by stalked eyes connected to an anterior sclerite, a subtrapezoidal head shield covering three small segments with reduced tergites, a trunk with 15 overlapping tergites with a well-developed dorsal keel, and paired tail flukes. CONCLUSIONS: The presence of antennae, biramous appendages with endopods composed of 15 articles, and multiple appendage pairs associated with the trunk tergites identify X. luoi nov. as a representative of Fuxianhuiida, an early branching group of stem-group euarthropods endemic to the early Cambrian of Southwest China. X. luoi nov. represents the fifth fuxianhuiid species described from the Chengjiang biota, and its functional morphology illuminates the ecological diversity of this important clade for understanding the early evolutionary history of euarthropods.
Assuntos
Artrópodes/anatomia & histologia , Biota , Microtomografia por Raio-X , Animais , Artrópodes/classificação , Evolução Biológica , Extremidades/anatomia & histologia , Fósseis , Cabeça/anatomia & histologiaRESUMO
The euarthropod head is a highly versatile and functionally specialized body region composed of multiple appendage-bearing segments and whose complex evolution has been scrutinized through anatomical, developmental, and paleontological approaches [1-4]. Exceptionally preserved Cambrian fossils have allowed for the reconstruction of critical stages of the evolutionary history of the head, such as the origin of the labrum-an anteromedian flap-like structure that overlies the mouth opening in almost all extant representatives-from an ancestral pair of pre-ocular (protocerebral) appendages [3-5]. The highly conserved position of the labrum makes it a valuable anatomical landmark for understanding the anterior segmental organization among extant and extinct euarthropods [2]. However, the labrum is seemingly absent in the megacheirans, a major extinct group characterized by enlarged raptorial "great appendages" with a central role in competing hypotheses on the early evolution of the head [1-3, 6-8]. Here, we used micro-computed tomography to demonstrate the presence of a three-dimensionally preserved labrum associated with the mouth opening in juvenile specimens of the megacheiran Leanchoilia illecebrosa from the early Cambrian Chengjiang biota, Southwest China. The position of the labrum relative to the pre-oral great appendages of L. illecebrosa indicates that these limbs correspond to the deutocerebral segment and are therefore serially homologous with the first appendage pair of extant euarthropods [1, 2, 4, 6, 8]. The reduced labrum and deutocerebral great appendages of L. illecebrosa also strengthen the affinities of megacheirans as stem-group chelicerates, in line with recent paleoneurological fossil data from the early to mid-Cambrian of China and North America [6, 9].
Assuntos
Artrópodes/anatomia & histologia , Fósseis , Animais , Evolução Biológica , China , Extinção Biológica , América do Norte , PaleontologiaRESUMO
Facivermis yunnanicus [1, 2] is an enigmatic worm-like animal from the early Cambrian Chengjiang Biota of Yunnan Province, China. It is a small (<10 cm) bilaterian with five pairs of spiny anterior arms, an elongated body, and a swollen posterior end. The unusual morphology of Facivermis has prompted a history of diverse taxonomic interpretations, including among annelids [1, 3], lophophorates [4], and pentastomids [5]. However, in other studies, Facivermis is considered to be more similar to lobopodians [2, 6-8]-the fossil grade from which modern panarthropods (arthropods, onychophorans, and tardigrades) are derived. In these studies, Facivermis is thought to be intermediate between cycloneuralian worms and lobopodians. Facivermis has therefore been suggested to represent an early endobenthic-epibenthic panarthropod transition [6] and to provide crucial insights into the origin of paired appendages [2]. However, the systematic affinity of Facivermis was poorly supported in a previous phylogeny [6], partially due to incomplete understanding of its morphology. Therefore, the evolutionary significance of Facivermis remains unresolved. In this study, we re-examine Facivermis from new material and the holotype, leading to the discovery of several new morphological features, such as paired eyes on the head and a dwelling tube. Comprehensive phylogenetic analyses using parsimony, Bayesian inference, and maximum likelihood all support Facivermis as a luolishaniid in a derived position within the onychophoran stem group rather than as a basal panarthropod. In contrast to previous studies, we therefore conclude that Facivermis provides a rare early Cambrian example of secondary loss to accommodate a highly specialized tube-dwelling lifestyle.