Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406637, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880766

RESUMO

A critical challenge in solid polymer lithium batteries is developing a polymer matrix that can harmonize ionic transportation, electrochemical stability, and mechanical durability. We introduce a novel polymer matrix design by deciphering the structure-function relationships of polymer side chains. Leveraging the molecular orbital-polarity-spatial freedom design strategy, a high ion-conductive hyperelastic ternary copolymer electrolyte (CPE) is synthesized, incorporating three functionalized side chains of poly-2,2,2-Trifluoroethyl acrylate (PTFEA), poly(vinylene carbonate) (PVC), and polyethylene glycol monomethyl ether acrylate (PEGMEA). It is revealed that fluorine-rich side chain (PTFEA) contributes to improved stability and interfacial compatibility; the highly polar side chain (PVC) facilitates the efficient dissociation and migration of ions; the flexible side chain (PEGMEA) with high spatial freedom promotes segmental motion and interchain ion exchanges. The resulting CPE demonstrates an ionic conductivity of 2.19 × 10-3 S cm-1 (30 °C), oxidation resistance voltage of 4.97 V, excellent elasticity (2700%), and non-flammability. The outer elastic CPE and the inner organic-inorganic hybrid SEI buffer intense volume fluctuation and enable uniform Li+ deposition. As a result, symmetric Li cells realize a high CCD of 2.55 mA cm-2 and the CPE-based Li||NCM811 full cell exhibits a high-capacity retention (~90%, 0.5 C) after 200 cycles.

2.
ACS Appl Mater Interfaces ; 16(2): 2912-2920, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174974

RESUMO

Biodegradable polymers and composites are promising candidates for biomedical implants in tissue engineering. However, state-of-the-art composite scaffolds suffer from a strength-toughness dilemma due to poor interfacial adhesion and filler dispersion. In this work, we propose a facile and scalable strategy to fabricate strong and tough biocomposite scaffolds through interfacial toughening. The immiscible biopolymer matrix is compatible by the direct incorporation of a third polymer. Densely entangled polymer chains lead to massive crazes and global shear yields under tension. Weak chemical interaction and high-shear melt processing create nanoscale dispersion of nanofillers within the matrix. The resultant ternary blends and composites exhibit an 11-fold increase in toughness without compromising stiffness and strength. At 70% porosity, three-dimensional (3D)-printed composite scaffolds demonstrate high compressive properties comparable to those of cancellous bones. In vitro cell culture on the scaffolds demonstrates not only good cell viability but also effective osteogenic differentiation of human mesenchymal stem cells. Our findings present a widely applicable strategy to develop high-performance biocomposite materials for tissue regeneration.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osteogênese , Osso e Ossos , Polímeros/química , Impressão Tridimensional , Porosidade
3.
Macromol Rapid Commun ; 45(5): e2300543, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102953

RESUMO

Entropy is a universal concept across the physics of mixtures. While the role of entropy in other multicomponent materials has been appreciated, its effects in polymers and plastics have not. In this work, it is demonstrated that the seemingly small mixing entropy contributes to the miscibility and performance of polymer alloys. Experimental and modeling studies on over 30 polymer pairs reveal a strong correlation between entropy, morphology, and mechanical properties, while elucidating the mechanism behind: in polymer blends with weak interactions, entropy leads to homogeneously dispersed nanosized domains stabilized by highly entangled chains. This unique microstructure promotes uniform plastic deformation at the interface, thus improving the toughness of conventional brittle polymers by 1-2 orders of magnitude without sacrificing other properties, analogous to high-entropy metallic alloys. The proposed strategy also applies to ternary polymer systems and copolymers, offering a new pathway toward the development of sustainable polymers.


Assuntos
Ligas , Polímeros , Entropia , Polímeros/química , Ligas/química , Plásticos
4.
Adv Mater ; 35(28): e2301532, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37197803

RESUMO

Hydrogels find important roles in biomedicine, wearable electronics, and soft robotics, but their mechanical properties are often unsatisfactory. Conventional tough hydrogel designs are based on hydrophilic networks with sacrificial bonds, while the incorporation of hydrophobic polymers into hydrogels is less well understood. In this work, a hydrogel toughening strategy is demonstrated by introducing a hydrophobic polymer as reinforcement. Semicrystalline hydrophobic polymer chains are "woven" into a hydrophilic network via entropy-driven miscibility. In-situ-formed sub-micrometer crystallites stiffen the network, while entanglements between hydrophobic polymer and hydrophilic network enable large deformation before failure. The hydrogels are stiff, tough, and durable at high swelling ratios of 6-10, and the mechanical properties are tunable. Moreover, they can effectively encapsulate both hydrophobic and hydrophilic molecules.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
5.
Bioconjug Chem ; 33(3): 444-451, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35138820

RESUMO

Membrane-less scenarios that involve liquid-liquid phase separation (coacervation) provide clues for how protocells might emerge. Here, we report a versatile approach to construct coacervates by mixing fatty acid with biomolecule dopamine as the protocell model. The coacervate droplets are easily formed over a wide range of concentrations. The solutes with different interaction characteristics, including cationic, anionic, and hydrophobic dyes, can be well concentrated within the coacervates. In addition, reversible self-assemblies of the coacervates can be controlled by concentration, pH, temperature, salinity, and bioreaction realizing cycles between compartmentalization and noncompartmentalization. Through in situ dopamine polymerization, the stability of coacervate droplets is significantly improved, leading to higher resistance toward external factors. Therefore, the coacervates based on fatty acid and dopamine could serve as a bottom-up membrane-less protocell model that provides the links between the simple (small molecule) and complex (macromolecule) systems in the process of cell evolution.


Assuntos
Células Artificiais , Células Artificiais/química , Dopamina , Ácidos Graxos , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares
6.
J Colloid Interface Sci ; 615: 759-767, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176542

RESUMO

HYPOTHESIS: Supramolecular self-assemblies involving non-covalent interactions play important roles in material science as well as living systems as they result in unique properties and/or functions. However, understanding of their self-assembly mechanism and crystallization has remained rudimentary. EXPERIMENT: Here, we focus on biomolecular fatty acid and dopamine, which commonly exist in biological systems and closely related to neurodegenerative diseases, and investigate their self-assembly pathway by optical and fluorescence microscopy, DLS, SAXS, TEM, 2D-NMR, etc. FINDINGS: It is found that they could form the crystalline plates in solution or via a metastable liquid - liquid phase separation (LLPS). The nucleation and growth of crystalline plates observed occurs in solution or the dilute phase of LLPS, and not within the concentrated coacervate phase. This is because in coacervate, dopamine intercalates into fatty acid through hydrophobic and electrostatic interaction, which hinders the rearrangement of molecules and nucleation process, whereas in solution or dilute phase, they have the mobility to arrange into ordered structures to maximize electrostatic, hydrogen bonding and π-π interactions, leading to nucleation and crystallization. Moreover, the transitions between the coacervates and crystalline phase can be realized by adjusting the temperature. Our results shed light on the multistep nucleation in the presence of LLPS, as well as molecular mechanisms involved, thus further extending the nucleation-growth mechanisms.


Assuntos
Dopamina , Cristalização , Ácidos Decanoicos , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Macromol Rapid Commun ; 43(2): e2100619, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34662467

RESUMO

Bio-based and biodegradable polymer composites, most notably poly(l-lactic acid) (PLLA) and poly(3-hydroxybutyrate) (PHB), represent a promising solution to replace conventional petroleum-based plastics. However, the brittleness and low miscibility of PLLA and PHB remain two major obstacles to practical applications. In this work, first PLLA/PHB blends are reported by melt mixing with a rigid component, poly(methyl methacrylate) (PMMA). Driven by favorable entropy, PMMA forms an interfacial nanolayer, which transforms the morphology of resultant blends. The ternary blends show 55-fold increase in elongation, 50-fold in toughness, and metal-like malleability (≈180° bending and twisting), while retaining its high stiffness (3.4 GPa) and strength (≈50 MPa). The mechanical improvement arises from numerous craze fibrils and shear deformation of the matrix, induced by the incorporated PMMA. Furthermore, this generic strategy can be applied to design other mechanically robust biocomposites for advanced green devices.


Assuntos
Poliésteres , Polímeros , Polimetil Metacrilato
8.
Macromol Rapid Commun ; 42(7): e2000716, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33543517

RESUMO

A highly emissive microgel is synthesized by polymerizing tetraphenylethene (TPE) based comonomers, acrylic acid, NIPAM, and permanent crosslinker ethylenebisacrylamide (BIS) (named as TPE microgel), which exhibited temperature responsive fluorescence emission. Rhodamine B (RhB), a positively charged molecule, is then inserted onto the surface of fabricated microgels through electrostatic interaction. As a result, a novel artificial light harvesting system with high energy transfer efficiency is constructed (named as TPE microgel-RhB light harvesting system), which is the first light harvesting system based on TPE microgels presenting dual response to pH and temperature. MTT assay indicates the fabricated TPE microgel and TPE microgel-RhB light harvesting system has good cytocompatibility. The strong fluorescence and good cytocompatibility make them perfect candidates for cell imaging. The prepared emissive microgel and light-harvesting system with desirable fluorescent property not only provide a new strategy for the fabrication of tunable luminescent nanomaterials, but also expand potential applications in the fields of stomach recognition, temperature sensors, and drug delivery.


Assuntos
Microgéis , Nanoestruturas , Fluorescência , Concentração de Íons de Hidrogênio , Temperatura
9.
ACS Macro Lett ; 10(4): 406-411, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549235

RESUMO

Polymer blends with synergetic performance play an integral part in modern society. The discovery of compatible polymer systems often relies on strong chemical interactions. By contrast, the role of entropy in polymers is often neglected. In this work, we show that entropy effect could control the phase structure and mechanical behaviors of polymer blends. For weakly interacting polymer pairs, the seemingly small mixing entropy favors the formation of nanoscale cocontinuous structures. The abundant nanointerfaces could initiate large plastic deformations by crazing or shear, thus, transforming brittle polymers (elongation < 9%) into superductile materials (elongation ∼ 146%). The resultant polymer blends display high transparency, strength (∼70 MPa), and toughness (∼60 MJ/m3) beyond most engineering plastics. The principle of entropy-driven blends may also be applied in other polymer systems, offering a strategy to develop mechanically robust bulk polymeric materials for emerging applications such as biomedicine and electronics.

10.
Soft Matter ; 13(46): 8717-8727, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29119191

RESUMO

Microgels are colloidal hydrogel particles that exhibit a pronounced softness, which arises from the swollen nature of the constituent polymer network. This softness leads to a substantial deformability of such particles at liquid interfaces, which, in turn translates into a complex phase behaviour that can exhibit a phase transition between a non-close packed and a close packed arrangement. Here, we explore how the degree of swellability and deformability - and therefore the softness of the particles - affects the phase behaviour of microgels at the air/water interface upon compression. We use precipitation polymerization to synthesize poly(N-isopropylacrylamide) microgels with similar hydrodynamic radii in the collapsed state and systematically vary the degree of swellability by changing the crosslinking density. We spread these microgels onto the air/water interface of a Langmuir trough and characterize their interfacial properties by surface pressure - area isotherms. Furthermore, we continuously transfer the interfacial microgel monolayer during compression onto a solid substrate, thus encoding the complete phase diagram of the microgels with increasing particle density as a function of the position on the solid substrate. We investigate the microgel arrangement by atomic force microscopy and scanning electron microscopy and use image analysis to extract quantitative information on the interparticle distance and degree of order. We find that the phase transition is very sensitive to the crosslinking density and occurs at much lower surface pressures for less deformable particles. The softest microgels do not undergo any phase transition. Instead, the system exhibits pronounced local conformation changes around point defects with local five- and sevenfold symmetries, indicating that the geometry of the assembled structure effectively controls the local pressure experienced by the microgels.

11.
J Environ Manage ; 168: 142-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26706226

RESUMO

A low-cost solid amine adsorbent for CO2 capture was prepared by using sugarcane bagasse (SB), a dominant agro-industrial residue in the sugar and alcohol industry as raw materials. In this preparation process, acrylamide was grafted on SB, and the grafted fiber was then aminated with different type of amine reagents to introduce primary and secondary amine groups onto the surface of SB fibers. The graft and amination conditions were optimized. The prepared solid amine adsorbent showed remarkable CO2 adsorption capacity and the adsorption capacity of the solid amine adsorbent could reach 5.01 mmol CO2/g at room temperature. The comparison of adsorption capacities of amine fibers aminated with various amination agents demonstrated that fibers aminated with triethylenetetramine would obtain higher adsorption capacities and higher amine efficiency. These adsorbents also showed good regeneration performance, the regenerated adsorbent could maintain almost the same adsorption capacity for CO2 after 10 recycles.


Assuntos
Aminas/química , Dióxido de Carbono/química , Celulose/química , Recuperação e Remediação Ambiental/métodos , Saccharum , Acrilamida/química , Adsorção , Aminação , Saccharum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA