Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 652(Pt B): 1857-1866, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688932

RESUMO

The catalytic conversion of nitrogen to ammonia is one of the most significant processes in nature and the chemical industry. However, the traditional Haber-Bosch process of ammonia synthesis consumes substantial energy and emits a large amount of carbon dioxide. The efficiency of photocatalytic N2 activation is severely limited by the lack of N2 adsorption sites and poor carrier utilization. Herein, an efficient α-Bi2O3/Bi3O4Br heterojunction is proposed with a photocatalytic nitrogen fixation activity of 238.67 µmol·g-1·h-1. Compared with the BiOBr precursor, α-Bi2O3 and Bi3O4Br, the α-Bi2O3/Bi3O4Br heterojunction with oxygen vacancies can improve the adsorption and activation capacity of N2 and promote the separation efficiency of charge carrier pairs by accommodating photogenerated electrons under visible light through the mechanism of N-type semiconductors. Therefore, oxygen vacancies and heterojunction engineering of semiconductive nanomaterials provide a promising method for the rational design of photocatalysts to enhance the rate of ammonia synthesis under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA