Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 263: 113983, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38749338

RESUMO

Scanning tunneling microscope (STM) is a renowned scientific tool for obtaining high-resolution atomic images of materials. Herein, we present an innovative design of the scanning unit with a compact yet powerful inertial piezoelectric motor inspired by the Spider Drive motor principle. The scanning unit mainly consists of a small 9 mm long piezoelectric tube scanner (PTS), one end of which is coaxially connected to the main sapphire body of the STM. Of particular emphasis in this design is the piezoelectric shaft (PS), constructed from piezoelectric material instead of conventional metallic or zirconium materials. The PS is a rectangular piezoelectric stack composed of two piezoelectric plates, which are elastically clamped on the inner wall of the PTS via a spring strip. The PTS and PS expand and contract independently with each other to improve the inertial force and reduce the threshold voltage. To ensure the stability of the PS and balance the stepping performance of the inertial motor, a counterweight, and a matching conical spring are fixed at the tail of the PS. This innovative design allows for the assessment of scanning unit performance by applying a driving signal, threshold voltage is 50 V at room temperature. Step sizes vary from 0.1 to 1 µm by changing the driving signal at room temperature. Furthermore, we successfully obtained atomic-resolution images of a highly oriented pyrolytic graphite (HOPG) sample and low drift rates of 23.4 pm/min and 34.6 pm/min in X-Y plane and Z direction, respectively, under ambient conditions. This small, compact STM unit has the potential for the development of a rotatable STM for use in cryogen-free magnets, and superconducting magnets.

2.
Ultramicroscopy ; 261: 113960, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547811

RESUMO

The high resolution of a scanning tunneling microscope (STM) relies on the stability of its scan unit. In this study, we present an isolated scan unit featuring non-magnetic design and ultra-high stability, as well as bidirectional movement capability. Different types of piezoelectric motors can be incorporated into the scan unit to create a highly stable STM. The standalone structure of scan unit ensures a stable atomic imaging process by decreasing noise generated by motor. The non-magnetic design makes the scan unit work stable in high magnetic field conditions. Moreover, we have successfully constructed a novel STM based on the isolated scan unit, in which two inertial piezoelectric motors act as the coarse approach actuators. The exceptional performance of homebuilt STM is proved by the high-resolution atomic images and dI/dV spectrums on NbSe2 surface at varying temperatures, as well as the raw-data images of graphite obtained at ultra-high magnetic fields of 23 T. According to the literature research, no STM has previously reported the atomic image at extreme conditions of 2 K low temperature and 23 T ultra-high magnetic field. Additionally, we present the ultra-low drift rates between the tip and sample at varying temperatures, as well as when raising the magnetic fields from 0 T to 23 T, indicating the ultra-high stability of the STM in high magnetic field conditions. The outstanding performance of our stable STM hold great potential for investigating the materials in ultra-high magnetic fields.

3.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546294

RESUMO

Low-temperature scanning tunneling microscopy and spectroscopy (STM/S) help to better understand the fundamental physics of condensed matter. We present an ultracompact STM within a Φ 10 piezo tube in a 20 T superconducting magnet. The carefully cut piezo tube contains the STM's coarse-positioning assembly. Loading an STM tip-sample mechanical loop into the piezo tube with special cut openings enables an ultracompact pencil-size dimension down to Φ 10 mm, in which fine-machined nonmagnetic parts are assembled to enable slide-stick motion and xyz-scanning procedures. The small size leads to a higher resonant frequency, a typical feature of a rigid STM instrument, increasing its vibration immunity. Scanning by moving the sample while keeping the tip stationary improves the stability of the tip-sample junction compared to moving the tip. Taking advantage of its high-field compatibility and rigid design, our STM captures the atomically resolved topography of highly oriented pyrolytic graphite (HOPG) at 1.5 K and in magnetic fields up to 17 T. The topography of graphene lattice and graphite is simultaneously recorded on an atomic terrace of HOPG, unveiling a modified local charge density at a surface defect. The superconducting energy gaps of layered type-II superconductors NbSe2 and PdBi2 are well resolved through dI/dV tunneling spectra at sub-2 K. Our unique STM is highly suitable for potential STM/S applications in world-class high-field facilities where the strong magnetic field can exceed 30 T.

4.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197772

RESUMO

Most known two-dimensional magnets exhibit a high sensitivity to air, making direct characterization of their domain textures technically challenging. Herein, we report on the construction and performance of a glovebox-assisted magnetic force microscope (MFM) operating in a cryogen-free magnet, realizing imaging of the intrinsic magnetic structure of water and oxygen-sensitive materials. It features a compact tubular probe for a 50 mm-diameter variable temperature insert installed in a 12 T cryogen-free magnet. A detachable sealing chamber can be electrically connected to the tail of the probe, and its pump port can be opened and closed by a vacuum manipulator located on the top of the probe. This sealing chamber enables sample loading and positioning in the glove box and MFM transfer to the magnet maintained in an inert gas atmosphere (in this case, argon and helium gas). The performance of the MFM is demonstrated by directly imaging the surface (using no buffer layer, such as h-BN) of very air-sensitive van der Waals magnetic material chromium triiodide (CrI3) samples at low temperatures as low as 5 K and high magnetic fields up to 11.9 T. The system's adaptability permits replacing the MFM unit with a scanning tunneling microscope unit, enabling high-resolution atomic imaging of air-sensitive surface samples.

5.
J Microsc ; 294(1): 26-35, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224001

RESUMO

We present the design and performance of a novel scanning tunnelling microscope (STM) operating in a cryogen-free superconducting magnet. Our home-built STM head is compact (51.5 mm long and 20 mm in diameter) and has a single arm that provides complete openness in the scanning area between the tip and sample. The STM head consists of two piezoelectric tubes (PTs), a piezoelectric scanning tube (PST) mounted on a well-polished zirconia shaft, and a large PT housed in a sapphire tube called the motor tube. The main body of the STM head is made of tantalum. In this design, we fixed the sapphire tube to the frame with screws so that the tube's position can be changed quickly. To analyse the stiffness of the STM head unit, we identified the lowest eigenfrequencies with 3 and 4 kHz in the bending modes, 8 kHz in a torsional mode, and 9 kHz in a longitudinal mode by finite element analysis, and also measured the low drift rates in the X-Y plane and in the Z direction. The high performance of the home-built STM was demonstrated by images of the hexagonal graphite lattice at 300 K and in a sweeping magnetic field from 0 T to 9 T. Our results confirm the high stability, vibration resistance, insensitivity to high magnetic fields and the application potential of our newly developed STM for the investigation of low-frequency systems with high static support stiffness in physics, chemistry, material and biological sciences.

6.
Ultramicroscopy ; 253: 113817, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37536124

RESUMO

We present a mechanism for directly positioning the tip over a micron-size sample by tracking the trajectory of the tip and tip shadow. A bilayer graphene sheet identified by Raman spectroscopy with a lateral size of 20 µm × 50 µm was transferred on the surface of shaped gold electrodes, on which it will be rapidly captured by a homebuilt scanning tunneling microscopy (STM) with the help of an optical microscope. Using the improved line-based imaging mode, atomic-resolution images featuring a hexagonal lattice structure on the bilayer graphene sheet were obtained by our positioning-capable STM. We have also observed a unique O-ring superstructure on graphene surface that caused by the collective interference near the boundaries or defects. Furthermore, we successfully captured a graphene sheet of size as small as 1.3 nm by a rapid and large-area searching operation; this is the first time that such a small graphene sheet has been observed with atomic resolution. The STM images of a micron-size graphene sheet illustrate the significant positioning ability and imaging precision of our homebuilt STM. Our results contribute to further STM studies on samples with ultra-small size.

7.
Ultramicroscopy ; 251: 113774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270856

RESUMO

We present the first nonmetallic scanning tunneling microscope (STM) featuring an ultra-stable tip-sample mechanical loop and capable of atomic-resolution imaging within a 12 T magnetic field that could be either perpendicular or parallel to the sample surface. This is also the first STM with an ultra-stable tip-sample mechanical loop but without a standalone scanner. The STM head is constructed only with two parts: an improved spider-drive motor and a zirconia tip holder. The motor performs both the coarse approach and atomic imaging. A supporting spring is set at the fixed end of the motor tube to decrease the tip-sample mechanical loop. The zirconia tip holder performs as the frame of the whole STM head. With the novel design, the STM head in three dimensions can be as small as 7.9 mm × 7.9 mm × 26.5 mm. The device's excellent performance is demonstrated by atomic-resolution images of graphite and NbSe2 obtained at 300 K and 2 K, as well as the high-resolution dI/dV spectrums of NbSe2 at variable temperatures. Low drift rates in the X-Y plane and Z direction further prove the imaging stability of our new STM. High-quality imaging of the Charge Density Wave (CDW) structure on a TaS2 surface shows the STM's good application capability. Continuous atomic images obtained in magnetic fields rangs from 0 T to 12 T with the direction of the magnetic field perpendicular or parallel to the sample surface show the STM's good immunity to high magnetic fields. Our results illustrate the new STM's broad application ability in extreme conditions of low temperature and high magnetic field.

8.
Ultramicroscopy ; 253: 113773, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37315346

RESUMO

Spectroscopic-imaging scanning tunnelling microscope (SI-STM) in a water-cooled magnet (WM) at low temperature has long been desirable in the condensed matter physics area since it is crucial for addressing various scientific problems, such as the behaviour of Cooper electrons crossing Hc2 in a high-temperature superconductor. Here we report on the construction and performance of the first atomically resolved cryogenic SI-STM in a WM. It operates at low temperatures of down to 1.7 K and in magnetic fields of up to 22 T (the WM's upper safety limit). The WM-SI-STM unit features a high-stiffness sapphire-based frame with the lowest eigenfrequency being 16 kHz. A slender piezoelectric scan tube (PST) is coaxially embedded in and glued to the frame. A well-polished zirconia shaft is spring-clamped onto the gold-coated inner wall of the PST to serve both the stepper and the scanner. The microscope unit as a whole is elastically suspended in a tubular sample space inside a 1K-cryostat by a two-stage internal passive vibrational reduction system, achieving a base temperature below 2 K in a static exchange gas. We demonstrate the SI-STM by imaging TaS2 at 50 K and FeSe at 1.7 K. Detecting the well-defined superconducting gap of FeSe, an iron-based superconductor, at variable magnetic fields demonstrates the device's spectroscopic imaging capability. The maximum noise intensity at the typical frequency is 3 pA per square root Hz at 22 T, which is only slightly worse than at 0 T, indicating the insensitivity of the STM to harsh conditions. In addition, our work shows the potential of SI-STMs for use in a WM and hybrid magnet with a 50 mm-bore size where high fields can be generated.

9.
Rev Sci Instrum ; 94(3): 033705, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012773

RESUMO

Scanning tunneling microscopes (STMs) that work in ultra-high vacuum and low temperatures are commonly used in condensed matter physics, but an STM that works in a high magnetic field to image chemical molecules and active biomolecules in solution has never been reported. Here, we present a liquid-phase STM for use in a 10 T cryogen-free superconducting magnet. The STM head is mainly constructed with two piezoelectric tubes. A large piezoelectric tube is fixed at the bottom of a tantalum frame to perform large-area imaging. A small piezoelectric tube mounted at the free end of the large one performs high-precision imaging. The imaging area of the large piezoelectric tube is four times that of the small one. The high compactness and rigidity of the STM head make it functional in a cryogen-free superconducting magnet with huge vibrations. The performance of our homebuilt STM was demonstrated by the high-quality, atomic-resolution images of a graphite surface, as well as the low drift rates in the X-Y plane and Z direction. Furthermore, we successfully obtained atomic-resolution images of graphite in solution conditions while sweeping the field from 0 to 10 T, illustrating the new STM's immunity to magnetic fields. The sub-molecular images of active antibodies and plasmid DNA in solution conditions show the device's capability of imaging biomolecules. Our STM is suitable for studying chemical molecules and active biomolecules in high magnetic fields.

10.
Micromachines (Basel) ; 14(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985044

RESUMO

We present a novel homebuilt scanning tunneling microscope (STM) with atomic resolution integrated into a cryogen-free superconducting magnet system with a variable temperature insert. The STM head is designed as a nested structure of double piezoelectric tubes (PTs), which are connected coaxially through a sapphire frame whose top has a sample stage. A single shaft made of tantalum, with the STM tip on top, is held firmly by a spring strip inside the internal PT. The external PT drives the shaft to the tip-sample junction based on the SpiderDrive principle, and the internal PT completes the subsequent scanning and imaging work. The STM head is simple, compact, and easy to assemble. The excellent performance of the device was demonstrated by obtaining atomic-resolution images of graphite and low drift rates of 30.2 pm/min and 41.4 pm/min in the X-Y plane and Z direction, respectively, at 300K. In addition, we cooled the sample to 1.6 K and took atomic-resolution images of graphite and NbSe2. Finally, we performed a magnetic field sweep test from 0 T to 9 T at 70 K, obtaining distinct graphite images with atomic resolution under varying magnetic fields. These experiments show our newly developed STM's high stability, vibration resistance, and immunity to high magnetic fields.

11.
Micromachines (Basel) ; 14(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36837986

RESUMO

Scanning tunneling microscopy (STM) can image material surfaces with atomic resolution, making it a useful tool in the areas of physics and materials. Many materials are synthesized at micron size, especially few-layer materials. Limited by their complex structure, very few STMs are capable of directly positioning and imaging a micron-sized sample with atomic resolution. Traditional STMs are designed to study the material behavior induced by temperature variation, while the physical properties induced by magnetic fields are rarely studied. In this paper, we present the design and construction of an atomic-resolution STM that can operate in a 9 T high magnetic field. More importantly, the homebuilt STM is capable of imaging micron-sized samples. The performance of the STM is demonstrated by high-quality atomic images obtained on a graphite surface, with low drift rates in the X-Y plane and Z direction. The atomic-resolution image obtained on a 32-µm graphite flake illustrates the new STM's ability of positioning and imaging micron-sized samples. Finally, we present atomic resolution images at a magnetic field range from 0 T to 9 T. The above advantages make our STM a promising tool for investigating the quantum hall effect of micron-sized layered materials.

12.
Micromachines (Basel) ; 14(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36838078

RESUMO

Recently, there has been growing interest in using lightwave-driven scanning probe microscopy (LD-SPM) to break through the Abbe diffraction limit of focusing, yielding insight into various energy couplings and conversion processes and revealing the internal information of matter. We describe a compact and efficient optical cryostat designed for LD-SPM testing under magnetic fields. The exceptional multilayer radiation shielding insert (MRSI) forms an excellent temperature gradient when filled with heat conducting gas, which removes the requirement to install an optical window in the liquid helium cooling shell. This not only critically avoids the vibration and thermal drift caused by solid heat conduction but also minimizes light transmission loss. The application of gate valves and bellows allows a simpler and more effective replacement of the sample and working cell in the test cavity. ANSYS software is used for steady-state thermal analysis of the MRSI to obtain the temperature distribution and heat transfer rate, and the necessity of the flexible copper shielding strips is illustrated by the simulations. The topography and magnetic domain images of 45 nm-thick La0.67Ca0.33MnO3 thin films on NdGaO3(001) substrates under a magnetic field were obtained by a self-made lightwave-driven magnetic force microscope in this cryostat. The resolution and noise spectra during imaging reveal temperature stability and low vibration throughout the cryostat. The experience acquired during the development of this cryostat will help to establish cryostats of similar types for a variety of optic applications requiring the use of cryogenic temperatures.

13.
Ultramicroscopy ; 245: 113668, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36565650

RESUMO

We present the design and construction of a nonmetallic tip-sample mechanical loop featured Scanning Tunneling Microscope (STM) that operates in a 22 T water-cooled magnet at a low temperature of l.8 K. The STM head mainly consists of a spider-drive motor, stand-alone scanner, moveable sapphire sample holder, and sapphire frame. All parts exist in the tip-sample mechanical loop are made of sapphire to reduce the interference from high magnetic fields. Except for the necessary movement of the tip and scanner, all STM parts are stationary. More importantly, the tip-sample mechanical loop is separate from the motor after detecting the tunneling current, which helps prevent the high voltage signal interference from entering the tip-sample junction, leading to a high stable imaging. A Janis liquid helium cryostat is used to obtain a variable temperature range from 1.8 K to 300 K, and the STM head is cooled down via helium exchange gas. The STM head hangs at the bottom of a probe with a two-stage spring suspension to prevent the huge vibration generated by the water-cooled magnet from entering the tip-sample junction. The performance is demonstrated by atomically resolved STM images of graphite surface at 0 T and 22.8 T under room temperature. Furthermore, the obtained atomic-resolution images of NbSe2 at 1.8 K and 22 T, as well as high-resolution dI/dV spectrums at temperatures from 1.8 K to 8.5 K and magnetic fields from 0 T to 22 T are displayed. This is the first STM capable of atomic-resolution imaging and dI/dV measurement at 1.8 K in a 22 T water-cooled magnet. The high immunity to the magnetic field makes the nonmetallic tip-sample mechanical loop widely useable for atomic-resolution STM imaging in ultra-high magnetic field conditions.

14.
Nat Commun ; 13(1): 6685, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335126

RESUMO

Single cell analysis is crucial for elucidating cellular diversity and heterogeneity as well as for medical diagnostics operating at the ultimate detection limit. Although superbly sensitive biosensors have been developed using the strongly enhanced evanescent fields provided by optical microcavities, real-time quantification of intracellular molecules remains challenging due to the extreme low quantity and limitations of the current techniques. Here, we introduce an active-mode optical microcavity sensing stage with enhanced sensitivity that operates via Förster resonant energy transferring (FRET) mechanism. The mutual effects of optical microcavity and FRET greatly enhances the sensing performance by four orders of magnitude compared to pure Whispering gallery mode (WGM) microcavity sensing system. We demonstrate distinct sensing mechanism of FRET-WGM from pure WGM. Predicted lasing wavelengths of both donor and acceptor by theoretical calculations are in perfect agreement with the experimental data. The proposed sensor enables quantitative molecular analysis at single cell resolution, and real-time monitoring of intracellular molecules over extended periods while maintaining the cell viability. By achieving high sensitivity at single cell level, our approach provides a path toward FRET-enhanced real-time quantitative analysis of intracellular molecules.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Técnicas Biossensoriais/métodos
15.
Micromachines (Basel) ; 13(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36363942

RESUMO

Magnetic Force Microscopy (MFM) is among the best techniques for examining and assessing local magnetic characteristics in surface structures at scales and sizes. It may be viewed as a unique way to operate atomic force microscopy with a ferromagnetic tip. The enhancement of magnetic signal resolution, the utilization of external fields during measurement, and quantitative data analysis are now the main areas of MFM development. We describe a new structure of MFM design based on a cryogen-free superconducting magnet. The piezoelectric tube (PZT) was implemented with a tip-sample coarse approach called SpiderDrive. The technique uses a magnetic tip on the free end of a piezo-resistive cantilever which oscillates at its resonant frequency. We obtained a high-quality image structure of the magnetic domain of commercial videotape under extreme conditions at 5 K, and a high magnetic field up to 11 T. When such a magnetic field was gradually increased, the domain structure of the videotape did not change much, allowing us to maintain the images in the specific regions to exhibit the performance. In addition, it enabled us to locate the sample region in the order of several hundred nanometers. This system has an extensive range of applications in the exploration of anisotropic magnetic phenomena in topological materials and superconductors.

16.
Opt Express ; 30(19): 33538-33553, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242387

RESUMO

Laser-induced coloration on a metallic surface has been of interest to many application arweas. However laser machining of metals involves many complex problems including nonlinear unstable coupled with multiple factors. Therefore there are still some significant challenges in the precise control of color creation. Here we explored the process of the laser-induced coloration and find the connection between surface colors and processing parameters. The Response Surface Methodology (RSM) based experimental design was adopted to explore the influence of the single processing parameter and the interaction between parameters on color changes of titanium. The results showed that the scanning speed laser power repetition rate and hatch distance had significant effects on color changes of titanium. Then we demonstrated that using artificial neural network (ANN) is an effective solution of nonlinear problems in laser-induced coloration which can match the processing parameters and the L*a*b* color values on titanium surface precisely with limited experiments. Finally we successfully used the processing parameters estimated by ANN model to create unique art painting on titanium with nanosecond pulsed laser. This work can provide a potential method to solve the problem in the color consistency and open a new perspective in industrial application of laser-induced coloration technology.

17.
Rev Sci Instrum ; 93(9): 093706, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182484

RESUMO

We constructed a piezoelectric rotatable magnetic force microscope (MFM) that works in a 10 T cryogen-free superconducting magnet. The piezoelectric tube is deformed tangentially and drives a bearing under the inertial drive principle so the MFM head can obtain rotary movement. Due to the novel piezoelectric design, the MFM can be hung underneath the heat sink via a soft spring, and it can be rotated in a cryogen-free superconducting magnet so that the direction of the magnetic field can be changed from 0° to 90° continuously. The system functions in magnetic fields of up to 10 T in any direction relative to the tip-sample geometry. This is the first piezoelectric rotatable MFM ever reported. Using this homemade rotatable MFM, we imaged the structure of magnetic tracks on a commercial videotape. When the magnetic field angle changes from 0° to 90°, the magnetic moments on the tape and probe tip also rotate. A magnetic field strength of 0.8 T parallel to the sample surface is required to fully rotate the magnetic moment of the tip we used, but 0.8 T is not enough to fully rotate the magnetic moment of the sample. The piezoelectric rotatable MFM is expected to be widely used to study the anisotropy of magnetic materials due to its superiority in obtaining the same high field in and out of plane (compared with a vector magnet) as well as in maintaining the same scan area precisely (compared with a mechanical rotatable MFM, especially for atomic-scale scan areas).

18.
Rev Sci Instrum ; 93(4): 043710, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489922

RESUMO

We present a two-degree-of-freedom piezoelectric motor, which is driven by a simple cross-shaped piezo unit. Here, not only the structure of high novelty and simplicity but also the working principle is new. The cross-shaped piezo unit is sandwiched between top and bottom guiding plates with roughly equal pressing forces applied between the four free ends of the piezo unit and the plates. The working principle is as follows: A pair of opposite arms of the piezo unit quickly and simultaneously expand and contract periodically in the X direction, which results in a vanishing total friction force in the X direction; meanwhile, the other two arms in the Y direction deform slowly in a push-pull manner, which will move the aforementioned X-direction arms a step in the Y direction; then, the Y direction piezo arms restore their initial states slowly one by one. Repeating these actions will produce continuous stepping in the Y direction. Because the structure is symmetric in X and Y directions, we can similarly produce stepping in the X direction. The advantages are obvious: compact, rigid, and planar, which are all important for high stability and, hence, crucial in building an atomically resolved scanning probe microscope.

19.
Opt Lett ; 47(3): 589-592, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103683

RESUMO

We report the fabrication and characterization of a five-tube nested hollow-core anti-resonant fiber (Nested HC-ARF), which exhibits outstanding optical performance in terms of a record attenuation value of 0.85 dB/km at 2 µm wavelength range with a 200 nm bandwidth below 2 dB/km and excellent modal purity. The power handling capability of the Nested HC-ARF is also demonstrated in this work. Pulses of 75 W, 160 ps from the thulium-doped fiber laser are delivered using a 6-m-long fabricated Nested HC-ARF. The tested fiber is coiled into a 20 cm bending radius and achieves a coupling efficiency of 86.7%. The maximum average power of 60.5 W is transmitted through our Nested HC-ARF in a robust single-mode fashion without introducing any damage to the input and output fiber end-faces, which demonstrates the superior ability of such a fiber for high-power laser delivery.

20.
Clin Exp Med ; 22(2): 193-200, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34471998

RESUMO

Colon cancer is one of most common cancers. The progression of various cancers is driven by miRNA-570. The role of miRNA-570 in the progression of colon cancer remains unclear. We aimed to investigate the clinical function of miR-570 and its impact on colon cancer cells. We evaluated the expression of miR-570 in colon cancer cells and analyzed its influence on the various clinical parameters. The Kaplan-Meier curve was plotted to understand the clinical role of miR-570. Cox regression analysis was performed to predict the prognostic factors in colon cancer. The Cell Counting Kit-8 was used to investigate the effect of miR-570 on cell proliferation. The transwell migration assay was performed to quantify cell migration and invasion. The quantitative real-time polymerase chain reaction technique was used to analyze the sample system. The results revealed that the level of miR-570 expression in colon cancer tissues and cell lines was low. The abnormal expression of miR-570 was associated with tumor size, extent of differentiation, lymph node metastasis, and tumor-node-metastasis stages. Downregulation of miR-570 indicated poor overall survival (OS), poor relapse-free survival, and unfavorable cancer-specific survival (CSS) rates in patients with colon cancer. The results from Cox regression analysis revealed that miR-570 expression could be used as an independent prognostic biomarker for OS and CSS in colon cancer. Overexpression of miR-570 can potentially result in the inhibition of cell proliferation, migration, and invasion. The results proved that miR-570 could potentially function as a tumor suppressor and a potential prognostic factor in patients with colon cancer.


Assuntos
Neoplasias do Colo , MicroRNAs , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/genética , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica , Recidiva Local de Neoplasia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA