Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396553

RESUMO

The NOTCH signaling pathway plays a pivotal role in diverse developmental processes, including cell proliferation and differentiation. In this study, we investigated whether this signaling molecules also contribute to avian adipogenesis. Using previous mRNA-seq datasets, we examined the expression of 11 signaling members during avian adipocyte differentiation. We found most members are down-regulated throughout differentiation (p < 0.05). As a representative, NOTCH1 was decreased in cultured chicken abdominal adipocytes during adipogenesis at mRNA and protein levels (p < 0.05). Moreover, using an overexpression plasmid for NOTCH1's intracellular domain (NICD1), as well as siRNA and DAPT to activate or deplete NOTCH1 in cells, we investigated the role of NOTCH1 in avian adipogenesis. Our findings illuminate that NOTCH1 activates the expression of HES1 and SOCS3 while it decreases NR2F2 and NUMB (p < 0.05), as well as inhibits oleic acid-induced adipocyte differentiation (p < 0.01). We further demonstrate that HES1, a downstream transcription factor activated by NOTCH1, also significantly inhibits adipogenesis by suppressing PPARγ and C/EBPα (p < 0.01). Collectively, these findings establish NOTCH1 as a negative regulator of avian adipocyte differentiation, unveiling NOTCH signaling as a potential target for regulating avian fat deposition.

2.
Gene ; 897: 148106, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128789

RESUMO

In the poultry industry, excessive abdominal fat deposition is not conducive to meat quality. Therefore, selection for optimal fat content levels in poultry has become a major breeding goal. We previously constructed NR2F2 overexpression (NR2F2OE) and knockout (NR2F2Δ/Δ/83-125aa) cell lines using Piggybac and CRISPR/Cas9 techniques, and confirmed that the transcription factor NR2F2 can significantly inhibit the differentiation of avian preadipocytes. In this study, we identified a downstream gene ZNF423 regulated by NR2F2, which is also involved in regulating avian fat deposition. First, we performed transcriptome analysis of the NR2F2-edited lines, which has been proven to be an inhibitor of avian fat deposition in our previous studies. Our findings revealed that NR2F2 affects a series of candidate regulators related to adipogenesis. Among these, we focused on ZNF423, which was significantly down-regulated in the NR2F2OE cell line and up-regulated in the NR2F2Δ/Δ/83-125aa cell line. Next, dual luciferase reporter assay results showed that the DNA-binding domain (DBDΔ72-143aa) of transcription factor NR2F2 may negatively affect the expression of downstream target gene ZNF423 by binding to its distal promoter region (-2356 to -2346). Moreover, we constructed a function analytical model and found that overexpression of ZNF423 significantly facilitated the differentiation of adipocytes in immortalized chicken preadipocytes (ICP1). Consistent with these findings, global transcriptome analysis of the ZNF423-overexpressed cell line (ZNF423OE) further demonstrated that the process of adipogenesis was significantly enriched. These results indicate that ZNF423 is a positive regulator of avian adipocyte differentiation. Overexpression of ZNF423 in the NR2F2OE cell line compensated for the inhibition of fat deposition phenotype, further suggesting that ZNF423 is a downstream target gene of NR2F2. These findings uncover a novel function of ZNF423 in avian adipocyte differentiation and analyzed the transcriptional regulation by its upstream transcription factor NR2F2. Additionally, we identified a list of functional candidate genes, providing important insights for further research on the mechanism of avian fat deposition.


Assuntos
Adipócitos , Fator II de Transcrição COUP , Regulação da Expressão Gênica , Fatores de Transcrição , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Galinhas , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo
3.
Commun Biol ; 6(1): 1233, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057566

RESUMO

A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.


Assuntos
Galinhas , Leptina , Animais , Galinhas/genética , Leptina/genética , Genoma , Genômica , Cromossomos
4.
BMC Biol ; 21(1): 303, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129834

RESUMO

BACKGROUND: Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood. RESULTS: We constructed a genomics, transcriptomics, and epigenomics map of the duck genome and assessed the evolutionary forces that have been in play across the whole genome during domestication. In total, 304 (42.94%) gene promoters have been specifically selected in Pekin duck among all selected genes. Joint multi-omics analysis reveals that 218 genes (72.01%) with selected promoters are located in open and active chromatin, and 267 genes (87.83%) with selected promoters were highly and differentially expressed in domestic trait-related tissues. One important candidate gene ELOVL3, with a strong signature of differentiation on the core promoter region, is known to regulate fatty acid elongation. Functional experiments showed that the nearly fixed variants in the top selected ELOVL3 promoter in Pekin duck decreased binding ability with HLF and increased gene expression, with the overexpression of ELOVL3 able to increase lipid deposition and unsaturated fatty acid enrichment. CONCLUSIONS: This study presents genome resequencing, RNA-Seq, Hi-C, and ATAC-Seq data of mallard and Pekin duck, showing that selection of the gene promoter region plays an important role in gene expression and phenotypic changes during domestication and highlights that the variants of the ELOVL3 promoter may have multiple effects on fat and long-chain fatty acid content in ducks.


Assuntos
Domesticação , Patos , Animais , Patos/genética , Patos/metabolismo , Herança Multifatorial , Regiões Promotoras Genéticas , Ácidos Graxos/metabolismo
5.
Poult Sci ; 102(9): 102857, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390555

RESUMO

Chicken is considered an ideal model species to study the synthesis of polyunsaturated fatty acids (PUFAs) due to its appropriate proportions of fatty acids and abundant content of PUFAs, suitable for human consumption. However, the molecular mechanisms regulating poultry PUFA synthesis remain unclear. Here, we systematically explored the transcriptional regulation activity of the gene family related to PUFA synthesis in chicken by carrying out the Dual-Luciferase Reporter Assay. We identified the core promoter regions of members of the chicken PUFA synthesis-related gene family, including ELOVL1, ELOVL2, ELOVL3, ELOVL4, ELOVL5, ELOVL6, ELOVL7, FADS1, FADS2, FADS6, SCD, and SCD5. Additionally, changes in relative fluorescence values of different truncated segments in the upstream regulatory region of these genes indicate the existence of regulatory regions. Furthermore, we predicted the transcription factors that bind to the identified core promoter regions of multiple genes, including Sp1, NF-1, C/EBPalpha, etc. These findings provide a basis for the molecular mechanisms regulating poultry PUFA synthesis and offer new scientific insight into the potential improvement of poultry meat quality in the future.


Assuntos
Galinhas , Ácidos Graxos Dessaturases , Humanos , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Galinhas/genética , Galinhas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos , Regiões Promotoras Genéticas
6.
J Anim Sci Biotechnol ; 14(1): 70, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121996

RESUMO

BACKGROUND: The fat deposition has a crucial role in animal meat flavor, and fat deposition-related traits are vital for breeding in the commercial duck industry. Avian fat-related traits are typical complex phenotypes, which need a large amount of data to analyze the genetic loci. RESULTS: In this study, we performed a new phenotypic analysis of fat traits and genotyped whole-genome variations for 1,246 ducks, and combed with previous GWAS data to reach 1,880 ducks for following analysis. The carcass composition traits, subcutaneous fat weight (SFW), subcutaneous fat percentage (SFP), abdominal fat weight (AFW), abdominal fat percentage (AFP) and the body weight of day 42 (BW42) for each duck were collected. We identified a set of new loci that affect the traits related to fat deposition in avian. Among these loci, ceroid-lipofuscinosis, neuronal 8 (CLN8) is a novel candidate gene controlling fat deposition. We investigated its novel function and regulation in avian adipogenesis. Five significant SNPs (the most significant SNP, P-value = 21.37E-12) and a single haplotype were detected in the upstream of CLN8 for subcutaneous fat percentage. Subsequently, luciferase assay demonstrated that 5 linked SNPs in the upstream of the CLN8 gene significantly decreased the transcriptional activity of CLN8. Further, ATAC-seq analysis showed that transcription factor binding sites were identified in a region close to the haplotype. A set of luciferase reporter gene vectors that contained different deletion fragments of the CLN8 promoter were constructed, and the core promoter area of CLN8 was finally identified in the -1,884/-1,207 bp region of the 5' flanking sequences, which contains adipogenesis-related transcription factors binding sites. Moreover, the over-expression of CLN8 can remarkably facilitate adipocyte differentiation in ICPs. Consistent with these, the global transcriptome profiling and functional analysis of the over-expressed CLN8 in the cell line further revealed that the lipid biosynthetic process during the adipogenesis was significantly enriched. CONCLUSIONS: Our results demonstrated that CLN8 is a positive regulator of avian adipocyte differentiation. These findings identify a novel function of CLN8 in adipocyte differentiation, which provides important clues for the further study of the mechanism of avian fat deposition.

7.
Poult Sci ; 102(3): 102436, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36623335

RESUMO

The microbiota has received plenty of attention in recent years due to its influence on host health and productivity. The striped eggs have reduced hatching performance and resulted in economic loss. The reasons are still unknown. Microbiota is one of the potentially important factors contributing to striped egg formation. This study investigates the relationship between the microbiota and striped eggs. The litter samples, feed samples, and cloacal swab samples of female ducks that produce striped eggs and normal eggs were performed for microbial diversity and composition using 16S rRNA sequencing. The results showed that there was no significant difference between feed microbiota and cloacal swab microbiota by alpha diversity, whereas, the number of microorganisms in the litter samples of female ducks that produced striped eggs was less than those of female ducks with normal eggs. There were compositional differences in litter microbiota of female ducks between the striped egg and the normal eggs. Among them, the abundance of Staphylococcus, Corynebacterium, and Brevibacterium in the litter of female ducks that produced striped eggs was significantly higher than that produced normal eggs. And these differential bacteria maybe affect the health of female ducks and cause abnormalities in the formation process of duck eggs. Therefore, the reduction of harmful bacteria may protect the reproductive health of female ducks and decrease the proportion of striped eggs. It provides an important reference to explore why female ducks produce striped eggs.


Assuntos
Patos , Microbiota , Animais , Feminino , Patos/genética , RNA Ribossômico 16S/genética , Galinhas/genética , Óvulo , Bactérias/genética , Ovos/análise
8.
Anim Genet ; 54(2): 211-215, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36593642

RESUMO

Angel wing is a developmental wing deformity that can influence breeding and reproduction in the commercial duck industry. The nutrition foundation of angel wing trait was initially explored, but the genetic basic remains poorly understood. In this study, we identified candidate genes and single-nucleotide polymorphisms (SNPs) associated with angel wing trait in Pekin ducks using a genome-wide association study (GWAS) and selective sweep analysis. The GWAS results showed that nine SNPs across five chromosomes were significantly correlated with the angel wing trait. In total, 468 selection signals were shown between the angel wing ducks and normal ducks, and these signals harbored 154 genes, which were enriched in the nervous system and metabolism. This study provides the new insights into the genetic factors that may influence duck angel wing.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Animais , Patos/genética , Patos/metabolismo , Estudo de Associação Genômica Ampla/veterinária , Fenótipo
9.
Genomics ; 114(6): 110518, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36347326

RESUMO

The Muscovy duck (Cairina moschata) is an economically important poultry species, which is susceptible to fatty liver. Thus, the Muscovy duck may serve as an excellent candidate animal model of non-alcoholic fatty liver disease. However, the mechanisms underlying fatty liver development in this species are poorly understood. In this study, we report a chromosome-level genome assembly of the Muscovy duck, with a contig N50 of 11.8 Mb and scaffold N50 of 83.16 Mb. The susceptibility of Muscovy duck to fatty liver was mainly attributed to weak lipid catabolism capabilities (fatty acid ß-oxidation and lipolysis). Furthermore, conserved noncoding elements (CNEs) showing accelerated evolution contributed to fatty liver formation by down-regulating the expression of genes involved in hepatic lipid catabolism. We propose that the susceptibility of Muscovy duck to fatty liver is an evolutionary by-product. In conclusion, this study revealed the potential mechanisms underlying the susceptibility of Muscovy duck to fatty liver.


Assuntos
Fígado Gorduroso , Humanos , Fígado Gorduroso/genética , Fígado Gorduroso/veterinária , Cromossomos , Lipídeos
10.
Front Cell Dev Biol ; 10: 940248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120570

RESUMO

Osteoblasts are indispensable for skeletal growth and maintenance. Bone marrow-derived mesenchymal stem cells (BMSCs) are useful in studying osteogenesis. In this study, BMSCs isolated from White Leghorns were differentiated into osteoblasts in vitro. Cells induced for -1, 0, 1, 11, and 22 d were used for transcriptomic analyses using the HISAT2-Stringtie-DESeq2 pipeline. Weighted correlation network analysis was processed to investigate significant modules, including differentially expressed genes (DEGs), correlated with osteogenic differentiation. Gene ontology and pathway enrichment analyses of DEGs were performed to elucidate the mechanisms of osteoblast differentiation. A total of 534, 1,144, 1,077, and 337 DEGs were identified between cells induced for -1 and 0, 0 and 1, 1 and 11, and 11 and 22 d, respectively (|log2FC| > 1.0, FDR <0.05). DEGs were mainly enriched in pathways related to cell proliferation in the early stage of osteogenic differentiation and pathways, such as the TGF-ß signaling pathway, in the middle and late stages of osteogenic differentiation. A protein-protein interaction network of the 87 DEGs in the MEturquoise module within top 5-%-degree value was built utilizing the STRING database. This study is the first to elucidate the transcriptomic changes in the osteogenic differentiation of BMSCs isolated from White Leghorns at different times. Our results provide insight into the dynamic transcriptome changes during BMSC differentiation into osteoblasts in chicken.

11.
Proc Natl Acad Sci U S A ; 119(30): e2201168119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858425

RESUMO

Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.


Assuntos
Metilação de DNA , DNA Mitocondrial , Implantação do Embrião , Genoma Mitocondrial , Estresse Oxidativo , Animais , Blastocisto/enzimologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Implantação do Embrião/genética , Mutação com Ganho de Função , Mutação com Perda de Função , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , DNA Metiltransferase 3B
13.
Front Physiol ; 12: 767739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858212

RESUMO

Adipose tissues have a central role in organisms, and adipose content is a crucial economic trait of poultry. Pekin duck is an ideal model to study the mechanism of abdominal and subcutaneous adipose deposition for its high ability of adipose synthesis and deposition. Alternative splicing contributes to functional diversity in abdominal and subcutaneous adipose. However, there has been no systematic analysis of the dynamics of differential alternative splicing of abdominal and subcutaneous adipose in Pekin duck. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to explore the transcriptional complexity of abdominal and subcutaneous adipose in Pekin ducks. In total, 143,931 and 111,337 full-length non-chimeric transcriptome sequences of abdominal and subcutaneous adipocytes were obtained from 41.78 GB raw data, respectively. These data led us to identify 19,212 long non-coding RNAs (lncRNAs) and 74,571 alternative splicing events. In addition, combined with the next-generation sequencing technology, we correlated the structure and function annotation with the differential expression profiles of abdominal and subcutaneous adipose transcripts. This study identified lots of novel alternative splicing events and major transcripts of transcription factors related to adipose synthesis. STAT3 was reported as a vital gene for adipogenesis, and we found that its major transcript is STAT3-1, which may play a considerable role in the process of adipose synthesis in Pekin duck. This study greatly increases our understanding of the gene models, genome annotations, genome structures, and the complexity and diversity of abdominal and subcutaneous adipose in Pekin duck. These data provide insights into the regulation of alternative splicing events, which form an essential part of transcript diversity during adipogenesis in poultry. The results of this study provide an invaluable resource for studying alternative splicing and tissue-specific expression.

14.
Nat Commun ; 12(1): 5932, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635656

RESUMO

Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.


Assuntos
Adipogenia/genética , Proteínas Aviárias/genética , Fator II de Transcrição COUP/genética , Patos/genética , Genoma , Lectinas Tipo C/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Proteínas Aviárias/classificação , Proteínas Aviárias/metabolismo , Cruzamento , Fator II de Transcrição COUP/metabolismo , Domesticação , Casca de Ovo/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Lectinas Tipo C/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Anotação de Sequência Molecular , Mutação , Zigoto/metabolismo
15.
Front Microbiol ; 12: 689653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385985

RESUMO

The composition of the gut microbiome plays important roles in digestion, nutrient absorption, and health. Here, we analyzed the microbial composition in the duodenum and ileum of yellow broilers. Chickens were grouped based on feed efficiency (high feed efficiency [HFE] and low feed efficiency [LFE] groups; n = 22 each). Microbial samples from the duodenum and ileum were collected, and 16S rRNA sequencing of the V3-V4 region was performed. The dominant bacteria in the duodenum were from the phyla Firmicutes and Cyanobacteria and the genera Lactobacillus, Faecalibacterium, and Ruminococcus. In the ileum, the phyla Firmicutes and Proteobacteria and the genera Lactobacillus, SMB53 and Enterococcus were predominant. Alpha diversity analysis showed that the microbiota diversity was significantly higher in the duodenum than in the ileum. The structure of the ileal microbiota was similar between groups, and the species richness of the microbiota in the HFE group was significantly higher than that in the LFE group. In the HFE and LFE groups, Firmicutes and Cyanobacteria were negatively correlated, and Lactobacillus had medium to high negative correlations with most other genera. Functional prediction analysis showed that the gluconeogenesis I pathway was the most abundant differential metabolic pathway and was significantly altered in the LFE group. Moreover, although the microbial community structures were similar in the duodenum and ileum, the diversity of the microbial community was significantly higher in the duodenum than in the ileum. Pearson correlation analysis revealed that the phylum Chloroflexi and genera Acinetobacter, Pseudomonas, Bacillus and Neisseria were with coefficients <-0.3 or >0.3. In the ileum, Ruminococcus may be associated with HFE whereas Faecalibacterium may be associated with LFE. These findings may provide valuable foundations for future research on composition and diversity of intestinal microbes and provide insights into the roles of intestinal microbes in improving feed efficiency and the industrial economic benefits of yellow broilers.

16.
Poult Sci ; 100(8): 101281, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34237544

RESUMO

Peking duck is the most representative of the meat-type duck breed, and it is also one of the most popular meats in Asia. Few studies were reported on the fast assessment of duck meat quality. This study aimed to develop a fast measuring of duck fat content by using the near-infrared spectroscopy (NIRS) method. We measured 273 duck breast muscle intramuscle fat (IMF) content and spectra. Partial least-squares regression (PLSR) was used to model the fat content prediction by using the spectra in the wavelengths between 950 and 1650 nm. The best predictive abilities were obtained after the first derivative pretreatment, with coefficient of calibration (R2C) of 0.92, with coefficient of prediction (R2P) of 0.90, ratio performance to deviation (RPD) of 2.72, and ratio of error range (RER) of 15.45, for samples of 30 g duck. Results demonstrated that the near-infrared spectroscopy is a useful tool for fat content assessment of Peking duck meat.


Assuntos
Patos , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Pequim , Galinhas , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho/veterinária
17.
BMC Genomics ; 22(1): 334, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964893

RESUMO

BACKGROUND: Feeding behavior traits are an essential part of livestock production. However, the genetic base of feeding behavior traits remains unclear in Pekin ducks. This study aimed to determine novel loci related to feeding behavior in Pekin ducks. RESULTS: In this study, the feeding information of 540 Pekin ducks was recorded, and individual genotype was evaluated using genotyping-by-sequencing methods. Genome-wide association analysis (GWAS) was conducted for feeding behavior traits. Overall, thirty significant (P-value < 4.74E-06) SNPs for feeding behavior traits were discovered, and four of them reached the genome-wide significance level (P-value < 2.37E-07). One genome-wide significance locus associated with daily meal times was located in a 122.25 Mb region on chromosome 2, which was within the intron of gene ubiquitin-conjugating enzyme E2 E2 (UBE2E2), and could explain 2.64% of the phenotypic variation. This locus was also significantly associated with meal feed intake, and explained 2.72% of this phenotypic variation. CONCLUSIONS: This study is the first GWAS for feeding behavior traits in ducks. Our results provide a list of candidate genes associated with feeding behavior, and also help to better understand the genetic mechanisms of feeding behavior patterns in ducks.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Animais , Patos/genética , Comportamento Alimentar , Genótipo , Fenótipo
18.
J Anim Sci Biotechnol ; 12(1): 55, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952351

RESUMO

BACKGROUND: A considerable number of muscle development-related genes were differentially expressed in the early stage of avian adipocyte differentiation. However, the functions of them in adipocyte differentiation remain largely known. In this study, the myoblast determination protein 1 (MYOD1) was selected as a representative of muscle development. We investigated its expression, function, and regulation in avian adipocyte differentiation. RESULTS: The expression of MYOD1 decreased significantly in the early stage of avian adipocyte differentiation. CRISPR/Cas9-mediated deletion of MYOD1 induced adipocyte differentiation, whereas over-expression of MYOD1 inhibited adipogenesis. The mRNA-seq data showed that MYOD1 could perturb the lipid biosynthetic process during differentiation. Our results showed that MYOD1 directly up-regulates the miR-206 expression by binding the upstream 1200 bp region of miR-206. Then, over-expression of miR-206 can inhibit the adipogenesis. Furthermore, MYOD1 affected the expression of endogenous miR-206 and its target gene Kruppel-like factor 4 (KLF4), which is an important activator of adipogenesis. Accordingly, the inhibition of miR-206 or over-expression of KLF4 could counteract the inhibitory effect of MYOD1 on adipocyte differentiation. CONCLUSIONS: Our results establish that MYOD1 inhibits adipocyte differentiation by up-regulating miR-206 to suppress the KLF4 expression. These findings identify a novel function of MYOD1 in adipocyte differentiation, suggesting a potential role in body-fat distribution regulation.

19.
Genomics Proteomics Bioinformatics ; 19(5): 772-786, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33631433

RESUMO

A lack of the complete pig proteome has left a gap in our knowledge of the pig genome and has restricted the feasibility of using pigs as a biomedical model. In this study, we developed a tissue-based proteome map using 34 major normal pig tissues. A total of 5841 unknown protein isoforms were identified and systematically characterized, including 2225 novel protein isoforms, 669 protein isoforms from 460 genes symbolized beginning with LOC, and 2947 protein isoforms without clear NCBI annotation in the current pig reference genome. These newly identified protein isoforms were functionally annotated through profiling the pig transcriptome with high-throughput RNA sequencing of the same pig tissues, further improving the genome annotation of the corresponding protein-coding genes. Combining the well-annotated genes that have parallel expression pattern and subcellular witness, we predicted the tissue-related subcellularlocations and potential functions for these unknown proteins. Finally, we mined 3081 orthologous genes for 52.7% of unknown protein isoforms across multiple species, referring to 68 KEGG pathways as well as 23 disease signaling pathways. These findings provide valuable insights and a rich resource for enhancing studies of pig genomics and biology, as well as biomedical model application to human medicine.


Assuntos
Genoma , Proteoma , Animais , Perfilação da Expressão Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Isoformas de Proteínas/genética , Proteoma/genética , Suínos/genética , Transcriptoma
20.
Anim Biosci ; 34(7): 1193-1201, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32054185

RESUMO

OBJECTIVE: According to market demand, meat duck breeding mainly includes 2 breeding directions: lean Pekin duck (LPD) and fat Pekin duck (FPD). The aim of the present study was to compare carcass and meat quality traits between 2 strains, and to provide basic data for guidelines of processing and meat quality improvement. METHODS: A total of 62 female Pekin ducks (32 LPDs and 30 FPDs) were slaughtered at the age of 42 days. The live body weight and carcass traits were measured and calculated. Physical properties of breast muscle were determined by texture analyzer and muscle fibers were measured by paraffin sections. The content of inosine monophosphate (IMP), intramuscular fat (IMF) and fatty acids composition were measured by high-performance liquid chromatography, Soxhlet extraction method and automated gas chromatography respectively. RESULTS: The results showed that the bodyweight of LPDs was higher than that of FPDs. FPDs were significantly higher than LPDs in subcutaneous fat thickness, subcutaneous fat weight, subcutaneous fat percentage, abdominal fat percentage and abdominal fat shear force (p<0.01). LPDs were significantly higher than FPDs in breast muscle thickness, breast muscle weight, breast muscle rate and breast muscle shear force (p<0.01). The muscle fiber average area and fiber diameter of LPDs were significantly higher than those of FPDs (p<0.01). The muscle fiber density of LPDs was significantly lower than that of FPDs (p<0.01). The IMF of LPDs in the breast muscle was significantly higher than that in the FPDs (p<0.01). There was no significant difference between the 2 strains in IMP content (p>0.05). The polyunsaturated fatty acid content of LPDs was significantly higher than that of FPDs (p<0.01), and FPDs had higher saturated fatty acid and monounsaturated fatty acid levels (p<0.05). CONCLUSION: Long-term breeding work resulted in vast differences between the two strains Pekin ducks. This study provides a reference for differences between LPD and FPD that manifest as a result of long-term selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA