Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 56(6): 1021-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25629167

RESUMO

Pectin, a complex polysaccharide rich in galacturonic acid, has been identified as a critical structural component of plant cell walls. The functionality of this intricate macromolecule in fruit- and vegetable-based-derived products and ingredients is strongly determined by the nanostructure of its most abundant polymer, homogalacturonan. During food processing, pectic homogalacturonan is susceptible to various enzymatic as well as nonenzymatic conversion reactions modifying its structural and, hence, its functional properties. Consequently, a profound understanding of the various process-structure-function relations of pectin aids food scientists to tailor the functional properties of plant-based derived products and ingredients. This review describes the current knowledge on process-structure-function relations of pectin in foods with special focus on pectin's functionality with regard to textural attributes of solid plant-based foods and rheological properties of particulated fruit- and vegetable-derived products. In this context, both pectin research performed via traditional, ex situ physicochemical analyses of fractionated walls and isolated polymers and pectin investigation through in situ pectin localization are considered.


Assuntos
Análise de Alimentos/métodos , Manipulação de Alimentos/métodos , Pectinas/química , Humanos , Reologia
2.
Food Chem ; 172: 272-82, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25442554

RESUMO

The objective of this work was to evaluate the possibility of using mango endogenous pectinases to change the viscosity of mango purée. Hereto, the structure of pectic polysaccharide and the presence of sufficiently active endogenous enzymes of ripe mango were determined. Pectin of mango flesh had a high molecular weight and was highly methoxylated. Pectin methylesterase showed a negligible activity which is related to the confirmed presence of a pectin methylesterase inhibitor. Pectin contained relatively high amounts of galactose and considerable ß-galactosidase (ß-Gal) activity was observed. The possibility of stimulating ß-Gal activity during processing (temperature/pressure, time) was investigated. ß-Gal of mango was rather temperature labile but pressure stable relatively to the temperature and pressure levels used to inactivate destructive enzymes in industry. Creating processing conditions allowing endogenous ß-Gal activity did not substantially change the consistency of mango purée.


Assuntos
Mangifera/química , Poligalacturonase/metabolismo , Pectinas/química , Pressão , Viscosidade , beta-Galactosidase/metabolismo
3.
Food Chem ; 132(3): 1534-1543, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29243646

RESUMO

The activity of the pectin-modifying enzymes pectin-methylesterase (PME) and polygalacturonase (PG) in tomato fruit was tailored by processing. Tomatoes were either not pretreated, high-temperature blanched (inactivation of both PME and PG), or high-pressure pretreated (selective inactivation of PG). Subsequently, two types of mechanical disruption, blending or high-pressure homogenisation, were applied to create tomato tissue particle suspensions with varying degrees of tissue disintegration. Process-induced pectin changes and their role in cell-cell adhesion were investigated through in situ pectin visualisation using anti-pectin antibodies. Microscopic results were supported with a (limited) physicochemical analysis of fractionated walls and isolated polymers. It was revealed that in intact tomato fruit pectin de-esterification is endogenously regulated by physical restriction of PME activity in the cell wall matrix. In disintegrated tomato tissue on the other hand, intensive de-esterification of pectin by the activity of PME occurred throughout the entire cell wall. PG was selectively inactivated (i.e. in high-pressure pretreated tomatoes), with de-esterification of pectin by PME, which resulted in a high level of Ca2+-cross-linked pectin and a strong intercellular adhesion. In non-pretreated tomato suspensions on the other hand, combined PME and PG activity presumably led to pectin depolymerisation and, hence, reduced intercellular adhesion. However, because of the high amount of Ca2+-cross-linked pectin in these samples, cell-cell adhesion was still stronger than in the high-temperature blanched tomatoes, in which the absence of PME activity during suspension preparation implied few Ca2+-cross-linked pectic polymers and extensive cell separation upon tissue disruption.

4.
Carbohydr Res ; 346(9): 1105-11, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21536260

RESUMO

This study delivers a comparison of the pectic and hemicellulosic cell wall polysaccharides between the commonly used vegetables broccoli (stem and florets separately), carrot, and tomato. Alcohol-insoluble residues were prepared from the plant sources and sequentially extracted with water, cyclohexane-trans-1,2-diamine tetra-acetic acid, sodium carbonate, and potassium hydroxide solutions, to obtain individual fractions, each containing polysaccharides bound to the cell wall in a specific manner. Structural characterization of the polysaccharide fractions was conducted using colorimetric and chromatographic approaches. Sugar ratios were defined to ameliorate data interpretation. These ratios allowed gaining information concerning polysaccharide structure from sugar composition data. Structural analysis of broccoli revealed organ-specific characteristics: the pectin degree of methoxylation (DM) of stem and florets differed, the sugar composition data inferred differences in polymeric composition. On the other hand, the molar mass (MM) distribution profiles of the polysaccharide fractions were virtually identical for both organs. Carrot root displayed a different MM distribution for the polysaccharides solubilized by potassium hydroxide compared to broccoli and tomato, possibly due to the high contribution of branched pectins to this otherwise hemicellulose-enriched fraction. Tomato fruit showed the pectins with the broadest range in DM, the highest MM, the greatest overall linearity and the lowest extent of branching of rhamnogalacturonan I, pointing to particularly long, linear pectins in tomato compared with the other vegetable organs studied, suggesting possible implications toward functional behavior.


Assuntos
Brassica/química , Parede Celular/química , Daucus carota/química , Pectinas/química , Pectinas/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Solanum lycopersicum/química , Brassica/citologia , Configuração de Carboidratos , Fracionamento Químico , Daucus carota/citologia , Solanum lycopersicum/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA