Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Clin Endocrinol Metab ; 108(9): e779-e788, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36884306

RESUMO

INTRODUCTION: Congenital hypothyroidism with gland-in-situ (CH-GIS) is usually attributed to mutations in the genes involved in thyroid hormone production. The diagnostic yield of targeted next-generation sequencing (NGS) varied widely between studies. We hypothesized that the molecular yield of targeted NGS would depend on the severity of CH. METHODS: Targeted NGS was performed in 103 CH-GIS patients from the French national screening program referred to the Reference Center for Rare Thyroid Diseases of Angers University Hospital. The custom targeted NGS panel contained 48 genes. Cases were classified as solved or probably solved depending on the known inheritance of the gene, the classification of the variants according to the American College of Medical Genetics and Genomics, the familial segregation, and published functional studies. Thyroid-stimulating hormone at CH screening and at diagnosis (TSHsc and TSHdg) and free T4 at diagnosis (FT4dg) were recorded. RESULTS: NGS identified 95 variants in 10 genes in 73 of the 103 patients, resulting in 25 solved cases and 18 probably solved cases. They were mainly due to mutations in the TG (n = 20) and TPO (n = 15) genes. The molecular yield was, respectively, 73% and 25% if TSHsc was ≥ and < 80 mUI/L, 60% and 30% if TSHdg was ≥ and < 100 mUI/L, and 69% and 29% if FT4dg was ≤ and > 5 pmol/L. CONCLUSION: NGS in patients with CH-GIS in France found a molecular explanation in 42% of the cases, increasing to 70% when TSHsc was ≥ 80 mUI/L or FT4dg was ≤ 5 pmol/L.


Assuntos
Hipotireoidismo Congênito , Humanos , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Mutação , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
2.
Mol Genet Metab Rep ; 29: 100812, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712575

RESUMO

Considering that some Inherited Metabolic Disorders (IMDs) can be diagnosed in patients with no distinctive clinical features of IMDs, we aimed to evaluate the power of exome sequencing (ES) to diagnose IMDs within a cohort of 547 patients with unspecific developmental disorders (DD). IMDs were diagnosed in 12% of individuals with causative diagnosis (177/547). There are clear benefits of using ES in DD to diagnose IMD, particularly in cases where biochemical studies are unavailable. SYNOPSIS: Exome sequencing and diagnostic rate of Inherited Metabolic Disorders in individuals with developmental disorders.

3.
J Med Genet ; 58(6): 400-413, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32732226

RESUMO

PURPOSE: Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses. METHODS: We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants. RESULTS: sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%). CONCLUSIONS: This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Exoma , Feto/anormalidades , Estudos de Associação Genética , Estudos de Coortes , Exoma/genética , Genótipo , Humanos , Análise de Sequência de DNA
4.
Hum Genet ; 139(11): 1381-1390, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32399599

RESUMO

Developmental disorders (DD), characterized by malformations/dysmorphism and/or intellectual disability, affecting around 3% of worldwide population, are mostly linked to genetic anomalies. Despite clinical exome sequencing (cES) centered on genes involved in human genetic disorders, the majority of patients affected by DD remain undiagnosed after solo-cES. Trio-based strategy is expected to facilitate variant selection thanks to rapid parental segregation. We performed a second step trio-ES (not only focusing on genes involved in human disorders) analysis in 70 patients with negative results after solo-cES. All candidate variants were shared with a MatchMaking exchange system to identify additional patients carrying variants in the same genes and with similar phenotype. In 18/70 patients (26%), we confirmed causal implication of nine OMIM-morbid genes and identified nine new strong candidate genes (eight de novo and one compound heterozygous variants). These nine new candidate genes were validated through the identification of patients with similar phenotype and genotype thanks to data sharing. Moreover, 11 genes harbored variants of unknown significance in 10/70 patients (14%). In DD, a second step trio-based ES analysis appears an efficient strategy in diagnostic and translational research to identify highly candidate genes and improve diagnostic yield.


Assuntos
Deficiências do Desenvolvimento/genética , Exoma/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Feminino , Genômica/métodos , Humanos , Masculino , Fenótipo , Sequenciamento do Exoma/métodos
5.
Hum Mutat ; 40(12): 2430-2443, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31379041

RESUMO

The expanding use of exome sequencing (ES) in diagnosis generates a huge amount of data, including untargeted mitochondrial DNA (mtDNA) sequences. We developed a strategy to deeply study ES data, focusing on the mtDNA genome on a large unspecific cohort to increase diagnostic yield. A targeted bioinformatics pipeline assembled mitochondrial genome from ES data to detect pathogenic mtDNA variants in parallel with the "in-house" nuclear exome pipeline. mtDNA data coming from off-target sequences (indirect sequencing) were extracted from the BAM files in 928 individuals with developmental and/or neurological anomalies. The mtDNA variants were filtered out based on database information, cohort frequencies, haplogroups and protein consequences. Two homoplasmic pathogenic variants (m.9035T>C and m.11778G>A) were identified in 2 out of 928 unrelated individuals (0.2%): the m.9035T>C (MT-ATP6) variant in a female with ataxia and the m.11778G>A (MT-ND4) variant in a male with a complex mosaic disorder and a severe ophthalmological phenotype, uncovering undiagnosed Leber's hereditary optic neuropathy (LHON). Seven secondary findings were also found, predisposing to deafness or LHON, in 7 out of 928 individuals (0.75%). This study demonstrates the usefulness of including a targeted strategy in ES pipeline to detect mtDNA variants, improving results in diagnosis and research, without resampling patients and performing targeted mtDNA strategies.


Assuntos
Biologia Computacional/métodos , DNA Mitocondrial/genética , Deficiências do Desenvolvimento/genética , Sequenciamento do Exoma/métodos , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Diagnóstico Precoce , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Adulto Jovem
6.
Am J Med Genet A ; 179(9): 1756-1763, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241255

RESUMO

Alpha-mannosidosis (AM) is a very rare (prevalence: 1/500000 births) autosomal recessive lysosomal storage disorder. It is characterized by multi-systemic involvement associated with progressive intellectual disability, hearing loss, skeletal anomalies, and coarse facial features. The spectrum is wide, from very severe and lethal to a milder phenotype that usually progresses slowly. AM is caused by a deficiency of lysosomal alpha-mannosidase. A diagnosis can be established by measuring the activity of lysosomal alpha-mannosidase in leucocytes and screening for abnormal urinary excretion of mannose-rich oligosaccharides. Genetic confirmation is obtained with the identification of MAN2B1 mutations. Enzyme replacement therapy (LAMZEDER ) was approved for use in Europe in August 2018. Here, we describe seven individuals from four families, diagnosed at 3-23 years of age, and who were referred to a clinical geneticist for etiologic exploration of syndromic hearing loss, associated with moderate learning disabilities. Exome sequencing had been used to establish the molecular diagnosis in five cases, including a two-sibling pair. In the remaining two patients, the diagnosis was obtained with screening of urinary oligosaccharides excretion and the association of deafness and hypotonia. These observations emphasize that the clinical diagnosis of AM can be challenging, and that it is likely an underdiagnosed rare cause of syndromic hearing loss. Exome sequencing can contribute significantly to the early diagnosis of these nonspecific mild phenotypes, with advantages for treatment and management.


Assuntos
Perda Auditiva/genética , Deficiência Intelectual/genética , alfa-Manosidase/genética , alfa-Manosidose/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Perda Auditiva/sangue , Perda Auditiva/complicações , Perda Auditiva/patologia , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Lisossomos/enzimologia , Masculino , Fenótipo , Irmãos , Sequenciamento do Exoma , Adulto Jovem , alfa-Manosidase/sangue , alfa-Manosidose/sangue , alfa-Manosidose/complicações , alfa-Manosidose/patologia
7.
Eur J Hum Genet ; 27(10): 1519-1531, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31231135

RESUMO

In clinical exome sequencing (cES), the American College of Medical Genetics and Genomics recommends limiting variant interpretation to established human-disease genes. The diagnostic yield of cES in intellectual disability and/or multiple congenital anomalies (ID/MCA) is currently about 30%. Though the results may seem acceptable for rare diseases, they mean that 70% of affected individuals remain genetically undiagnosed. Further analysis extended to all mutated genes in a research environment is a valuable strategy for improving diagnostic yields. This study presents the results of systematic research reanalysis of negative cES in a cohort of 313 individuals with ID/MCA. We identified 17 new genes not related to human disease, implicated 22 non-OMIM disease-causing genes recently or previously rarely related to disease, and described 1 new phenotype associated with a known gene. Twenty-six candidate genes were identified and are waiting for future recurrence. Overall, we diagnose 15% of the individuals with initial negative cES, increasing the diagnostic yield from 30% to more than 40% (or 46% if strong candidate genes are considered). This study demonstrates the power of such extended research reanalysis to increase scientific knowledge of rare diseases. These novel findings can then be applied in the field of diagnostics.


Assuntos
Sequenciamento do Exoma , Técnicas de Diagnóstico Molecular , Pesquisa , Análise de Sequência de DNA , Adolescente , Criança , Pré-Escolar , Biologia Computacional/métodos , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma/métodos
8.
Cell Stem Cell ; 24(2): 257-270.e8, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595499

RESUMO

Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular , Lisossomos/metabolismo , Transdução de Sinais , Alelos , Animais , Autorrenovação Celular , Feminino , GTP Fosfo-Hidrolases/metabolismo , Genoma , Humanos , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fosforilação , Mutação Puntual/genética , Ligação Proteica , Transcrição Gênica
9.
Ann Neurol ; 84(5): 788-795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30269351

RESUMO

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.


Assuntos
Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Criança , Pré-Escolar , Epilepsia Generalizada/genética , Feminino , Genótipo , Humanos , Masculino , Mutação , Fenótipo
10.
Eur J Hum Genet ; 26(1): 85-93, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29184170

RESUMO

Syndromes caused by copy number variations are described as reciprocal when they result from deletions or duplications of the same chromosomal region. When comparing the phenotypes of these syndromes, various clinical features could be described as reversed, probably due to the opposite effect of these imbalances on the expression of genes located at this locus. The NFIX gene codes for a transcription factor implicated in neurogenesis and chondrocyte differentiation. Microdeletions and loss of function variants of NFIX are responsible for Sotos syndrome-2 (also described as Malan syndrome), a syndromic form of intellectual disability associated with overgrowth and macrocephaly. Here, we report a cohort of nine patients harboring microduplications encompassing NFIX. These patients exhibit variable intellectual disability, short stature and small head circumference, which can be described as a reversed Sotos syndrome-2 phenotype. Strikingly, such a reversed phenotype has already been described in patients harboring microduplications encompassing NSD1, the gene whose deletions and loss-of-function variants are responsible for classical Sotos syndrome. Even though the type/contre-type concept has been criticized, this model seems to give a plausible explanation for the pathogenicity of 19p13 microduplications, and the common phenotype observed in our cohort.


Assuntos
Anormalidades Múltiplas/genética , Duplicação Cromossômica , Cromossomos Humanos Par 19/genética , Deficiência Intelectual/genética , Fatores de Transcrição NFI/genética , Anormalidades Múltiplas/patologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Síndrome
11.
J Inherit Metab Dis ; 41(1): 129-139, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28924877

RESUMO

BACKGROUND AND AIM: To improve the diagnostic work-up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. METHODS: Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. RESULTS: We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2-IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post-traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non-genetic etiologies (n = 3) were also identified. CONCLUSION: We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases.


Assuntos
Monoaminas Biogênicas/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/diagnóstico , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Biomarcadores/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/terapia , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Mutação , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Sistema de Registros , Estudos Retrospectivos
13.
Eur J Med Genet ; 60(11): 595-604, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28807864

RESUMO

BACKGROUND AND OBJECTIVE: Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to improve turnaround times for sequencing results. METHODS: WES was proposed to 29 patients with severe undiagnosed disorders with developmental abnormalities and faced with medical situations requiring rapid diagnosis. Each family gave consent. The extracted DNA was sequenced on a NextSeq500 (Illumina) instrument. Data were analyzed following standard procedures. Variants were interpreted using in-house software. Each rare variant affecting protein sequences with clinical relevance was tested for familial segregation. RESULTS: The diagnostic rate was 45% (13/29), with a mean turnaround time of 40 days from reception of the specimen to delivery of results to the referring physician. Besides permitting genetic counseling, the rapid diagnosis for positive families led to two pre-natal diagnoses and two inclusions in clinical trials. CONCLUSIONS: This pilot study demonstrated the feasibility of rapid diagnostic WES in our primary genetics center. It reduced the diagnostic odyssey and helped provide support to families.


Assuntos
Exoma , Testes Genéticos/normas , Análise de Sequência de DNA/normas , Adolescente , Adulto , Criança , Pré-Escolar , Diagnóstico Precoce , Feminino , Testes Genéticos/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Fatores de Tempo
14.
J Hum Genet ; 61(8): 693-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27193221

RESUMO

Otopalatodigital spectrum disorders (OPDSD) constitute a group of dominant X-linked osteochondrodysplasias including four syndromes: otopalatodigital syndromes type 1 and type 2 (OPD1 and OPD2), frontometaphyseal dysplasia, and Melnick-Needles syndrome. These syndromes variably associate specific facial and extremities features, hearing loss, cleft palate, skeletal dysplasia and several malformations, and show important clinical overlap over the different entities. FLNA gain-of-function mutations were identified in these conditions. FLNA encodes filamin A, a scaffolding actin-binding protein. Here, we report phenotypic descriptions and molecular results of FLNA analysis in a large series of 27 probands hypothesized to be affected by OPDSD. We identified 11 different missense mutations in 15 unrelated probands (n=15/27, 56%), of which seven were novel, including one of unknown significance. Segregation analyses within families made possible investigating 20 additional relatives carrying a mutation. This series allows refining the phenotypic and mutational spectrum of FLNA mutations causing OPDSD, and providing suggestions to avoid the overdiagnosis of OPD1.


Assuntos
Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Estudos de Associação Genética , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo , Alelos , Substituição de Aminoácidos , Éxons , Fácies , Feminino , Filaminas/genética , Humanos , Masculino , Linhagem , Análise de Sequência de DNA
15.
Ann Neurol ; 78(6): 871-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288984

RESUMO

OBJECTIVE: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the SACS gene. SACS encodes sacsin, a protein whose function remains unknown, despite the description of numerous protein domains and the recent focus on its potential role in the regulation of mitochondrial physiology. This study aimed to identify new mutations in a large population of ataxic patients and to functionally analyze their cellular effects in the mitochondrial compartment. METHODS: A total of 321 index patients with spastic ataxia selected from the SPATAX network were analyzed by direct sequencing of the SACS gene, and 156 patients from the ATAXIC project presenting with congenital ataxia were investigated either by targeted or whole exome sequencing. For functional analyses, primary cultures of fibroblasts were obtained from 11 patients carrying either mono- or biallelic variants, including 1 case harboring a large deletion encompassing the entire SACS gene. RESULTS: We identified biallelic SACS variants in 33 patients from SPATAX, and in 5 nonprogressive ataxia patients from ATAXIC. Moreover, a drastic and recurrent alteration of the mitochondrial network was observed in 10 of the 11 patients tested. INTERPRETATION: Our results permit extension of the clinical and mutational spectrum of ARSACS patients. Moreover, we suggest that the observed mitochondrial network anomalies could be used as a trait biomarker for the diagnosis of ARSACS when SACS molecular results are difficult to interpret (ie, missense variants and heterozygous truncating variant). Based on our findings, we propose new diagnostic definitions for ARSACS using clinical, genetic, and cellular criteria.


Assuntos
Biomarcadores , Proteínas de Choque Térmico/fisiologia , Mitocôndrias , Espasticidade Muscular/diagnóstico , Ataxias Espinocerebelares/congênito , Adolescente , Adulto , Técnicas de Cultura de Células , Criança , Estudos de Coortes , Feminino , Fibroblastos , Proteínas de Choque Térmico/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Mutação , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA