Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Nature ; 618(7964): 383-393, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258665

RESUMO

The earliest events during human tumour initiation, although poorly characterized, may hold clues to malignancy detection and prevention1. Here we model occult preneoplasia by biallelic inactivation of TP53, a common early event in gastric cancer, in human gastric organoids. Causal relationships between this initiating genetic lesion and resulting phenotypes were established using experimental evolution in multiple clonally derived cultures over 2 years. TP53 loss elicited progressive aneuploidy, including copy number alterations and structural variants prevalent in gastric cancers, with evident preferred orders. Longitudinal single-cell sequencing of TP53-deficient gastric organoids similarly indicates progression towards malignant transcriptional programmes. Moreover, high-throughput lineage tracing with expressed cellular barcodes demonstrates reproducible dynamics whereby initially rare subclones with shared transcriptional programmes repeatedly attain clonal dominance. This powerful platform for experimental evolution exposes stringent selection, clonal interference and a marked degree of phenotypic convergence in premalignant epithelial organoids. These data imply predictability in the earliest stages of tumorigenesis and show evolutionary constraints and barriers to malignant transformation, with implications for earlier detection and interception of aggressive, genome-instable tumours.


Assuntos
Transformação Celular Neoplásica , Evolução Clonal , Lesões Pré-Cancerosas , Seleção Genética , Neoplasias Gástricas , Humanos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Evolução Clonal/genética , Instabilidade Genômica , Mutação , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Organoides/metabolismo , Organoides/patologia , Aneuploidia , Variações do Número de Cópias de DNA , Análise de Célula Única , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Progressão da Doença , Linhagem da Célula
3.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993286

RESUMO

Cancer represents a broad spectrum of molecularly and morphologically diverse diseases. Individuals with the same clinical diagnosis can have tumors with drastically different molecular profiles and clinical response to treatment. It remains unclear when these differences arise during disease course and why some tumors are addicted to one oncogenic pathway over another. Somatic genomic aberrations occur within the context of an individual's germline genome, which can vary across millions of polymorphic sites. An open question is whether germline differences influence somatic tumor evolution. Interrogating 3,855 breast cancer lesions, spanning pre-invasive to metastatic disease, we demonstrate that germline variants in highly expressed and amplified genes influence somatic evolution by modulating immunoediting at early stages of tumor development. Specifically, we show that the burden of germline-derived epitopes in recurrently amplified genes selects against somatic gene amplification in breast cancer. For example, individuals with a high burden of germline-derived epitopes in ERBB2, encoding human epidermal growth factor receptor 2 (HER2), are significantly less likely to develop HER2-positive breast cancer compared to other subtypes. The same holds true for recurrent amplicons that define four subgroups of ER-positive breast cancers at high risk of distant relapse. High epitope burden in these recurrently amplified regions is associated with decreased likelihood of developing high risk ER-positive cancer. Tumors that overcome such immune-mediated negative selection are more aggressive and demonstrate an "immune cold" phenotype. These data show the germline genome plays a previously unappreciated role in dictating somatic evolution. Exploiting germline-mediated immunoediting may inform the development of biomarkers that refine risk stratification within breast cancer subtypes.

4.
J Natl Cancer Inst ; 115(4): 468-472, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36610996

RESUMO

Prostate cancer is one of the most heritable cancers. Hundreds of germline polymorphisms have been linked to prostate cancer diagnosis and prognosis. Polygenic risk scores can predict genetic risk of a prostate cancer diagnosis. Although these scores inform the probability of developing a tumor, it remains unknown how germline risk influences the tumor molecular evolution. We cultivated a cohort of 1250 localized European-descent patients with germline and somatic DNA profiling. Men of European descent with higher genetic risk were diagnosed earlier and had less genomic instability and fewer driver genes mutated. Higher genetic risk was associated with better outcome. These data imply a polygenic "two-hit" model where germline risk reduces the number of somatic alterations required for tumorigenesis. These findings support further clinical studies of polygenic risk scores as inexpensive and minimally invasive adjuncts to standard risk stratification. Further studies are required to interrogate generalizability to more ancestrally and clinically diverse populations.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Prognóstico , Predisposição Genética para Doença
6.
Cancer Cell ; 40(12): 1521-1536.e7, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400020

RESUMO

Ductal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Translational Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts. We identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classifier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include proliferation, immune response, and metabolism. Distinct stromal expression patterns and immune cell compositions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved atlas of breast precancers, where complementary modalities can be directly compared and correlated with conventional pathology findings, disease states, and clinical outcome.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Progressão da Doença , Neoplasias da Mama/patologia , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
7.
Nat Genet ; 54(11): 1746-1754, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253572

RESUMO

Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.


Assuntos
Glioblastoma , Neoplasias , Humanos , Oncogenes , DNA/genética , Neoplasias/genética , Neoplasias/patologia , Glioblastoma/genética , Receptores ErbB/genética
8.
Cancer Discov ; 12(12): 2838-2855, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36108240

RESUMO

Prostate cancer is one of the most heritable human cancers. Genome-wide association studies have identified at least 185 prostate cancer germline risk alleles, most noncoding. We used integrative three-dimensional (3D) spatial genomics to identify the chromatin interaction targets of 45 prostate cancer risk alleles, 31 of which were associated with the transcriptional regulation of target genes in 565 localized prostate tumors. To supplement these 31, we verified transcriptional targets for 56 additional risk alleles using linear proximity and linkage disequilibrium analysis in localized prostate tumors. Some individual risk alleles influenced multiple target genes; others specifically influenced only distal genes while leaving proximal ones unaffected. Several risk alleles exhibited widespread germline-somatic interactions in transcriptional regulation, having different effects in tumors with loss of PTEN or RB1 relative to those without. These data clarify functional prostate cancer risk alleles in large linkage blocks and outline a strategy to model multidimensional transcriptional regulation. SIGNIFICANCE: Many prostate cancer germline risk alleles are enriched in the noncoding regions of the genome and are hypothesized to regulate transcription. We present a 3D genomics framework to unravel risk SNP function and describe the widespread germline-somatic interplay in transcription control. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias da Próstata , Masculino , Humanos , Alelos , Transcriptoma , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Genômica/métodos , Mutação , Células Germinativas/patologia , Polimorfismo de Nucleotídeo Único
9.
Nat Commun ; 13(1): 3671, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760778

RESUMO

Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Imunoterapia , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo
10.
J Hematol Oncol ; 15(1): 48, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505417

RESUMO

Multiparametric magnetic resonance imaging (mpMRI) is an emerging standard for diagnosing and prognosing prostate cancer, but ~ 20% of clinically significant tumors are invisible to mpMRI, as defined by the Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) score of one or two. To understand the biological underpinnings of tumor visibility on mpMRI, we examined the proteomes of forty clinically significant tumors (i.e., International Society of Urological Pathology (ISUP) Grade Group 2)-twenty mpMRI-visible and twenty mpMRI-invisible, with matched histologically normal prostate. Normal prostate tissue was indistinguishable between patients with visible and invisible tumors, and invisible tumors closely resembled the normal prostate. These data indicate that mpMRI-visibility arises when tumor evolution leads to large-magnitude proteomic divergences from histologically normal prostate.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Humanos , Masculino , Gradação de Tumores , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Proteômica
11.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068856

RESUMO

Our knowledge of prostate cancer (PCa) genomics mainly reflects European (EUR) and Asian (ASN) populations. Our understanding of the influence of Middle Eastern (ME) and African (AFR) ancestry on the mutational profiles of prostate cancer is limited. To characterize genomic differences between ME, EUR, ASN, and AFR ancestry, fluorescent in situ hybridization (FISH) studies for NKX3-1 deletion and MYC amplification were carried out on 42 tumors arising in individuals of ME ancestry. These were supplemented by analysis of genome-wide copy number profiles of 401 tumors of all ancestries. FISH results of NKX3-1 and MYC were assessed in the ME cohort and compared to other ancestries. Gene level copy number aberrations (CNAs) for each sample were statistically compared between ancestry groups. NKX3-1 deletions by FISH were observed in 17/42 (17.5%) prostate tumors arising in men of ME ancestry, while MYC amplifications were only observed in 1/42 (2.3%). Using CNAs called from arrays, the incidence of NKX3-1 deletions was significantly lower in ME vs. other ancestries (20% vs. 52%; p = 2.3 × 10-3). Across the genome, tumors arising in men of ME ancestry had fewer CNAs than those in men of other ancestries (p = 0.014). Additionally, the somatic amplification of 21 specific genes was more frequent in tumors arising in men of ME vs. EUR ancestry (two-sided proportion test; Q < 0.05). Those included amplifications in the glutathione S-transferase family on chromosome 1 (GSTM1, GSTM2, GSTM5) and the IQ motif-containing family on chromosome 3 (IQCF1, IQCF2, IQCF13, IQCF4, IQCF5, IQCF6). Larger studies investigating ME populations are warranted to confirm these observations.

12.
Cancer Cell ; 39(6): 747-749, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34019808

RESUMO

In this issue of Cancer Cell, Bagaev et al. discover conserved relationships between immune and stroma activity that are prognostic and predictive of response to immunotherapy across cancer types. The authors develop a visualization tool, akin to a tumor personality test, to integrate genomic and microenvironmental profiling and guide therapeutic decision-making.


Assuntos
Neoplasias , Tomada de Decisões , Humanos , Imunoterapia , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Testes de Personalidade , Prognóstico
14.
Nat Commun ; 12(1): 1781, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741908

RESUMO

Prostate cancer (PCa) risk-associated SNPs are enriched in noncoding cis-regulatory elements (rCREs), yet their modi operandi and clinical impact remain elusive. Here, we perform CRISPRi screens of 260 rCREs in PCa cell lines. We find that rCREs harboring high risk SNPs are more essential for cell proliferation and H3K27ac occupancy is a strong indicator of essentiality. We also show that cell-line-specific essential rCREs are enriched in the 8q24.21 region, with the rs11986220-containing rCRE regulating MYC and PVT1 expression, cell proliferation and tumorigenesis in a cell-line-specific manner, depending on DNA methylation-orchestrated occupancy of a CTCF binding site in between this rCRE and the MYC promoter. We demonstrate that CTCF deposition at this site as measured by DNA methylation level is highly variable in prostate specimens, and observe the MYC eQTL in the 8q24.21 locus in individuals with low CTCF binding. Together our findings highlight a causal mechanism synergistically driven by a risk SNP and DNA methylation-mediated 3D genome architecture, advocating for the integration of genetics and epigenetics in assessing risks conferred by genetic predispositions.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Edição de Genes/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias da Próstata/genética , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Locos de Características Quantitativas/genética , Elementos Reguladores de Transcrição/genética , Fatores de Risco
15.
Nat Genet ; 52(8): 778-789, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661416

RESUMO

Although DNA methylation is a key regulator of gene expression, the comprehensive methylation landscape of metastatic cancer has never been defined. Through whole-genome bisulfite sequencing paired with deep whole-genome and transcriptome sequencing of 100 castration-resistant prostate metastases, we discovered alterations affecting driver genes that were detectable only with integrated whole-genome approaches. Notably, we observed that 22% of tumors exhibited a novel epigenomic subtype associated with hypermethylation and somatic mutations in TET2, DNMT3B, IDH1 and BRAF. We also identified intergenic regions where methylation is associated with RNA expression of the oncogenic driver genes AR, MYC and ERG. Finally, we showed that differential methylation during progression preferentially occurs at somatic mutational hotspots and putative regulatory regions. This study is a large integrated study of whole-genome, whole-methylome and whole-transcriptome sequencing in metastatic cancer that provides a comprehensive overview of the important regulatory role of methylation in metastatic castration-resistant prostate cancer.


Assuntos
Metilação de DNA/genética , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Carcinogênese/genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Genoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estudos Prospectivos , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
16.
J Clin Invest ; 130(8): 3987-4005, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32343676

RESUMO

Transcriptional dysregulation is a hallmark of prostate cancer (PCa). We mapped the RNA polymerase II-associated (RNA Pol II-associated) chromatin interactions in normal prostate cells and PCa cells. We discovered thousands of enhancer-promoter, enhancer-enhancer, as well as promoter-promoter chromatin interactions. These transcriptional hubs operate within the framework set by structural proteins - CTCF and cohesins - and are regulated by the cooperative action of master transcription factors, such as the androgen receptor (AR) and FOXA1. By combining analyses from metastatic castration-resistant PCa (mCRPC) specimens, we show that AR locus amplification contributes to the transcriptional upregulation of the AR gene by increasing the total number of chromatin interaction modules comprising the AR gene and its distal enhancer. We deconvoluted the transcription control modules of several PCa genes, notably the biomarker KLK3, lineage-restricted genes (KRT8, KRT18, HOXB13, FOXA1, ZBTB16), the drug target EZH2, and the oncogene MYC. By integrating clinical PCa data, we defined a germline-somatic interplay between the PCa risk allele rs684232 and the somatically acquired TMPRSS2-ERG gene fusion in the transcriptional regulation of multiple target genes - VPS53, FAM57A, and GEMIN4. Our studies implicate changes in genome organization as a critical determinant of aberrant transcriptional regulation in PCa.


Assuntos
Biomarcadores Tumorais , Cromatina , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , Neoplasias da Próstata , RNA Polimerase II/metabolismo , Elementos de Resposta , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/patologia , Humanos , Masculino , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Polimerase II/genética
17.
Nat Med ; 25(10): 1615-1626, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591588

RESUMO

Oncogenesis is driven by germline, environmental and stochastic factors. It is unknown how these interact to produce the molecular phenotypes of tumors. We therefore quantified the influence of germline polymorphisms on the somatic epigenome of 589 localized prostate tumors. Predisposition risk loci influence a tumor's epigenome, uncovering a mechanism for cancer susceptibility. We identified and validated 1,178 loci associated with altered methylation in tumoral but not nonmalignant tissue. These tumor methylation quantitative trait loci influence chromatin structure, as well as RNA and protein abundance. One prominent tumor methylation quantitative trait locus is associated with AKT1 expression and is predictive of relapse after definitive local therapy in both discovery and validation cohorts. These data reveal intricate crosstalk between the germ line and the epigenome of primary tumors, which may help identify germline biomarkers of aggressive disease to aid patient triage and optimize the use of more invasive or expensive diagnostic assays.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Mutação em Linhagem Germinativa/genética , Neoplasias da Próstata/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Locos de Características Quantitativas/genética
18.
Dis Model Mech ; 12(7)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350286

RESUMO

The potent MYC oncoprotein is deregulated in many human cancers, including breast carcinoma, and is associated with aggressive disease. To understand the mechanisms and vulnerabilities of MYC-driven breast cancer, we have generated an in vivo model that mimics human disease in response to MYC deregulation. MCF10A cells ectopically expressing a common breast cancer mutation in the phosphoinositide 3 kinase pathway (PIK3CAH1047R) led to the development of organised acinar structures in mice. Expressing both PIK3CAH1047R and deregulated MYC led to the development of invasive ductal carcinoma. Therefore, the deregulation of MYC expression in this setting creates a MYC-dependent normal-to-tumour switch that can be measured in vivo These MYC-driven tumours exhibit classic hallmarks of human breast cancer at both the pathological and molecular level. Moreover, tumour growth is dependent upon sustained deregulated MYC expression, further demonstrating addiction to this potent oncogene and regulator of gene transcription. We therefore provide a MYC-dependent model of breast cancer, which can be used to assay invivo tumour signalling pathways, proliferation and transformation from normal breast acini to invasive breast carcinoma. We anticipate that this novel MYC-driven transformation model will be a useful research tool to better understand the oncogenic function of MYC and for the identification of therapeutic vulnerabilities.


Assuntos
Neoplasias da Mama/patologia , Mama/metabolismo , Genes myc , Modelos Biológicos , Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
19.
Pac Symp Biocomput ; 24: 136-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864317

RESUMO

Cancer is a complex collection of diseases that are to some degree unique to each patient. Precision oncology aims to identify the best drug treatment regime using molecular data on tumor samples. While omics-level data is becoming more widely available for tumor specimens, the datasets upon which computational learning methods can be trained vary in coverage from sample to sample and from data type to data type. Methods that can 'connect the dots' to leverage more of the information provided by these studies could offer major advantages for maximizing predictive potential. We introduce a multi-view machinelearning strategy called PLATYPUS that builds 'views' from multiple data sources that are all used as features for predicting patient outcomes. We show that a learning strategy that finds agreement across the views on unlabeled data increases the performance of the learning methods over any single view. We illustrate the power of the approach by deriving signatures for drug sensitivity in a large cancer cell line database. Code and additional information are available from the PLATYPUS website https://sysbiowiki.soe.ucsc.edu/platypus.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Aprendizado de Máquina , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Factuais , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Armazenamento e Recuperação da Informação , Aprendizado de Máquina/estatística & dados numéricos , Neoplasias/genética , Modelagem Computacional Específica para o Paciente , Variantes Farmacogenômicos , Medicina de Precisão , Software , Aprendizado de Máquina Supervisionado/estatística & dados numéricos
20.
BMC Bioinformatics ; 20(1): 42, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665349

RESUMO

BACKGROUND: We introduce BPG, a framework for generating publication-quality, highly-customizable plots in the R statistical environment. RESULTS: This open-source package includes multiple methods of displaying high-dimensional datasets and facilitates generation of complex multi-panel figures, making it suitable for complex datasets. A web-based interactive tool allows online figure customization, from which R code can be downloaded for integration with computational pipelines. CONCLUSION: BPG provides a new approach for linking interactive and scripted data visualization and is available at http://labs.oicr.on.ca/boutros-lab/software/bpg or via CRAN at https://cran.r-project.org/web/packages/BoutrosLab.plotting.general.


Assuntos
Análise de Dados , Treinamento por Simulação/métodos , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA