Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22096, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543838

RESUMO

Molybdenum disulfide (MoS2) has been combined so far with other photodetecting semiconductors as an enhancing agent owing to its optical and electronic properties. Existing approaches demonstrated MoS2-incorporated photodetector devices using complex and costly fabrication processes. Here, we report on simplified one-step on the chemical vapor deposition (CVD) based synthesis of a unique microfiber/microflower MoS2-based heterostructure formed by capturing MoO2 intermediate material during the CVD process. This particular morphology engenders a material chemical and electronic interplay exalting the heterostructure absorption up to ~ 98% over a large spectral range between 200 and 1500 nm. An arsenal of characterization methods were used to elucidate the properties of these novel heterostructures including Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectrometry, high-resolution transmission and scanning electron microscopies, and Kelvin probe force microscopy. Our findings revealed that the MoS2 and the MoO2 crystallize in the hexagonal and monoclinic lattices, respectively. The integration of the MoS2/MoO2 heterostructures into functional photodetectors revealed a strong photoresponse under both standard sun illumination AM1.5G and blue light excitation at 450 nm. Responsivity and detectivity values as high as 0.75 mA W-1 and 1.45 × 107 Jones, respectively, were obtained with the lowest light intensity of 20 mW cm-2 at only 1 V bias. These results demonstrate the high performances achieved by the unique MoS2/MoO2 heterostructure for broadband light harvesting and pave the way for their adoption in photodetection applications.

2.
Sci Rep ; 11(1): 1780, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469073

RESUMO

Dislocation engineering in crystalline materials is essential when designing materials for a large range of applications. Segregation of additional elements at dislocations is frequently used to modify the influence of dislocations on material properties. Thus, the influence of the dislocation elastic field on impurity segregation is of major interest, as its understanding should lead to engineering solutions that improve the material properties. We report the experimental study of the elastic field influence on atomic segregation in the core and in the area surrounding edge dislocations in Fe-based alloys. Each element is found either to segregate in the edge dislocation core or to form atmospheres. The elastic field has a strong effect on the segregation atmosphere, but no effect on the dislocation core segregation. The theory is in good agreement with experiments, and should support dislocation engineering.

3.
Ultramicroscopy ; 132: 193-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23522972

RESUMO

The effect on Fe-Cr phase separation of a uniaxial stress during thermal ageing at 425 °C is investigated on a Fe-15Cr-5Ni steel, a model alloy of commercial 15-5 PH steel. The applied stress is shown to accelerate the ageing kinetics, and influence the morphology of Cr rich domains. A dependence of the phase separation decomposition kinetics on the relative orientations of the load and the crystal local orientation has also been observed.

4.
Ultramicroscopy ; 109(7): 797-801, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19339118

RESUMO

The NiSi silicide that forms by reactive diffusion between Ni and Si active regions of nanotransistors is used nowadays as contacts in nanoelectronics because of its low resistivity. Pt is added to the Ni film in order to stabilise the NiSi phase against the formation of the high-resistivity NiSi(2) phase and agglomeration. In situ X-ray diffraction (XRD) experiments performed on material aged at 350 degrees C (under vacuum) showed the complete consumption of the Ni (5 at% Pt) phase, the regression of Ni(2)Si phase as well as the growth of the NiSi phase after 48 min. Pt distribution for this heat treatment has been analysed by laser-assisted tomographic atom probe (LATAP). An enrichment of platinum in the middle of the NiSi phase suggests that Pt is almost immobile during the growth of NiSi at the two interfaces: Ni(2)Si/NiSi and NiSi/Si. In the peak, platinum was found to substitute for Ni in the NiSi phase. Very small amounts of Pt were also found in the Ni(2)Si phase close to the surface and at the NiSi/Si interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA