Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 202(6): 800-817, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033179

RESUMO

AbstractEcological interactions are crucial to the structure and function of biological communities, but we lack a causal understanding of the forces shaping their emergence during evolutionary diversification. Here we provide a conceptual framework linking different modes of diversification (e.g., ecological diversification), which depend on environmental characteristics, to the evolution of different forms of ecological interactions (e.g., resource partitioning) in asexual lineages. We tested the framework by examining the net interactions in communities of Pseudomonas aeruginosa produced via experimental evolution in nutritionally simple (SIM) or complex (COM) environments by contrasting the productivity and competitive fitness of whole evolved communities relative to their component isolates. As expected, we found that nutritional complexity drove the evolution of communities with net positive interactions whereas SIM communities had similar performance as their component isolates. A follow-up experiment revealed that high fitness in two COM communities was driven by rare variants (frequency <0.1%) that antagonized PA14, the ancestral strain and common competitor used in fitness assays. Our study suggests that the evolution of de novo ecological interactions in asexual lineages is predictable at a broad scale from environmental conditions. Further, our work demonstrates that rare variants can disproportionately impact the function of relatively simple microbial communities.


Assuntos
Biota , Pseudomonas aeruginosa , Evolução Biológica
2.
J Anim Ecol ; 90(2): 528-541, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159687

RESUMO

Parents providing care must sometimes choose between rearing locations that are most favourable for offspring versus those that are most favourable for themselves. Here, we measured how both parental and offspring performance varied in nest sites distributed along an environmental gradient. The plainfin midshipman fish Porichthys notatus nests along a tidal gradient. When ascending from the subtidal to the high intertidal at low tide, both nest temperature and frequency of air exposure increase. We used one lab and two field experiments to investigate how parental nest site choices across tidal elevations are linked to the physiological costs incurred by parents and the developmental benefits accrued by offspring. Under warmer incubation conditions, simulating high intertidal nests, offspring developed faster but had higher mortality rates compared to those incubated in cooler conditions that mimicked subtidal nests. In the field, males in higher intertidal nests were more active caregivers, but their young still died at the fastest rates. Larger males claimed and retained low intertidal nests, where offspring survival and development rates were also highest. Our results suggest that males compete more intensively for nest sites in the low intertidal, where they can raise their young quickly and with lower per-offspring investments. Smaller, less-competitive males forced into higher intertidal sites nest earlier in the season and provide more active parental care, possibly to bolster brood survival under harsh environmental conditions.


Assuntos
Batracoidiformes , Animais , Masculino , Comportamento de Nidação , Estações do Ano , Temperatura
3.
Physiol Biochem Zool ; 93(2): 111-128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32013739

RESUMO

The decision of where to rear young is influenced by both the needs of offspring and the costs parents incur in certain rearing environments. Plainfin midshipman fish (Porichthys notatus) provide extended paternal care in rocky intertidal zones, where they experience regular bouts of aquatic hypoxia and air exposure during low-tide events. We investigated the physiological responses of plainfin midshipman males to three conditions for 6 h that simulate what these fish naturally experience during tidal cycles while nesting: normoxia, progressive hypoxia, or air exposure. Hypoxia- and air-exposed fish exhibited shifts in energy metabolites, driven largely by elevated lactate and glucose content and reduced glycogen content in several tissues (muscle, heart, liver, and brain), but the magnitude of these changes was relatively modest. Hematocrit increased most in air-exposed fish relative to normoxia-exposed fish, contributing to an increase in whole-blood hemoglobin concentration. Air exposure reduced swim bladder oxygen content, suggesting that internal O2 stores are drawn on during air exposure. In a second experiment, we found that aquatic surface respiration and gill ventilation frequency increased in hypoxia-exposed fish relative to normoxia-exposed fish. Overall, our results suggest that plainfin midshipman overcome the challenges of the intertidal environment through a variety of physiological strategies and exhibit little physiological disturbance in response to the fluctuating and extreme conditions created by regular low tides.


Assuntos
Adaptação Fisiológica , Batracoidiformes/fisiologia , Oxigênio/metabolismo , Respiração , Aerobiose , Sacos Aéreos , Animais , Batracoidiformes/metabolismo , Brânquias/fisiologia , Hipóxia , Masculino , Fenômenos Fisiológicos da Pele , Ondas de Maré
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA