Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400254, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943240

RESUMO

Due to their unique mechanical and thermal properties, polyurethane foams are widely used in multiple fields of applications, including cushioning, thermal insulation or biomedical engineering. However, the way polyurethane foams are usually manufactured - via chemical foaming - produces samples where blowing and gelling occurs at the same time, resulting in a morphology control achieved by trial and error processes. Here, we introduce a novel strategy to build model homogeneous polyurethane foams of controlled density with millimetric bubbles from liquid templates. We show that by producing a polyurethane foam via physical bubbling without a catalyst and gently depositing a secondary foam containing catalyst on the top of this first foam, we can take advantage of drainage mechanisms to trigger the solidification of the bottom foam. The characterisation of our samples performed by X-ray microtomography allows us to study quantitatively the structure of the final solid foam, at the global and at the local scale. Using the tomographic three-dimensional images of the foam architectures, we show that the superimposed foam technique introduced in this article is promising to produce foams with a good homogeneity along the vertical direction, with a density controlled by varying the concentration of catalyst in the secondary foam. This article is protected by copyright. All rights reserved.

2.
Macromol Rapid Commun ; 43(17): e2200189, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35579423

RESUMO

Controlling the pore connectivity of polymer foams is key for most of their applications, ranging from liquid uptake, mechanics, and acoustic/thermal insulation to tissue engineering. Despite their importance, the scientific phenomena governing the pore-opening processes remain poorly understood, requiring tedious trial-and-error procedures for property optimization. This lack of understanding is partly explained by the high complexity of the different interrelated, multiscale processes which take place as the foam transforms from an initially fluid foam into a solid foam. To progress in this field, this work takes inspiration from long-standing research on liquid foams and thin films to develop model experiments in a microfluidic "Thin Film Pressure Balance." These experiments allow the investigation of isolated thin films under well-controlled environmental conditions reproducing those arising within a foam undergoing cross-linking and drying. Using the example of alginate hydrogel films, the evolution of isolated thin films undergoing gelation and drying is correlated with the evolution of the rheological properties of the same alginate solution in bulk. The overall approach is introduced and a first set of results is presented to propose a starting point for the phenomenological description of the different types of pore-opening processes and the classification of the resulting pore-opening types.


Assuntos
Hidrogéis , Engenharia Tecidual , Alginatos , Polímeros , Reologia , Engenharia Tecidual/métodos
3.
Soft Matter ; 18(12): 2325-2331, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35174372

RESUMO

The ability of liquid interfaces to shape slender elastic structures provides powerful strategies to control the architecture of mechanical self assemblies. However, elastocapillarity-driven intelligent design remains unexplored in more complex architected liquids - such as foams. Here we propose a model system which combines an assembly of bubbles and a slender elastic structure. Arrangements of soap bubbles in confined environments form well-defined periodic structures, dictated by Plateau's laws. We consider a 2D foam column formed in a container with square cross-section in which we introduce an elastomer ribbon, leading to architected structures whose geometry is guided by a competition between elasticity and capillarity. In this system, we quantify both experimentally and theoretically the equilibrium shapes, using X-ray micro-tomography and energy minimisation techniques. Beyond the understanding of the amplitude of the wavy elastic ribbon deformation, we provide a detailed analysis of the profile of the ribbon, and show that such a setup can be used to grant a shape to a UV-curable composite slender structure, as a foam-forming technique suitable to miniaturisation. In more general terms, this work provides a stepping stone towards an improved understanding of the interactions between liquid foams and slender structures.

4.
Adv Healthc Mater ; 10(17): e2100383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938638

RESUMO

Indwelling arterial lines, the clinical gold standard for continuous blood pressure (BP) monitoring in the pediatric intensive care unit (PICU), have significant drawbacks due to their invasive nature, ischemic risk, and impediment to natural body movement. A noninvasive, wireless, and accurate alternative would greatly improve the quality of patient care. Recently introduced classes of wireless, skin-interfaced devices offer capabilities in continuous, precise monitoring of physiologic waveforms and vital signs in pediatric and neonatal patients, but have not yet been employed for continuous tracking of systolic and diastolic BP-critical for guiding clinical decision-making in the PICU. The results presented here focus on materials and mechanics that optimize the system-level properties of these devices to enhance their reliable use in this context, achieving full compatibility with the range of body sizes, skin types, and sterilization schemes typically encountered in the PICU. Systematic analysis of the data from these devices on 23 pediatric patients, yields derived, noninvasive BP values that can be quantitatively validated against direct recordings from arterial lines. The results from this diverse cohort, including those under pharmacological protocols, suggest that wireless, skin-interfaced devices can, in certain circumstances of practical utility, accurately and continuously monitor BP in the PICU patient population.


Assuntos
Cuidados Críticos , Sinais Vitais , Pressão Sanguínea , Criança , Humanos , Recém-Nascido , Monitorização Fisiológica , Pele
5.
Sci Transl Med ; 13(587)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790027

RESUMO

The concentration of chloride in sweat remains the most robust biomarker for confirmatory diagnosis of cystic fibrosis (CF), a common life-shortening genetic disorder. Early diagnosis via quantitative assessment of sweat chloride allows prompt initiation of care and is critically important to extend life expectancy and improve quality of life. The collection and analysis of sweat using conventional wrist-strapped devices and iontophoresis can be cumbersome, particularly for infants with fragile skin, who often have insufficient sweat production. Here, we introduce a soft, epidermal microfluidic device ("sweat sticker") designed for the simple and rapid collection and analysis of sweat. Intimate, conformal coupling with the skin supports nearly perfect efficiency in sweat collection without leakage. Real-time image analysis of chloride reagents allows for quantitative assessment of chloride concentrations using a smartphone camera, without requiring extraction of sweat or external analysis. Clinical validation studies involving patients with CF and healthy subjects, across a spectrum of age groups, support clinical equivalence compared to existing device platforms in terms of accuracy and demonstrate meaningful reductions in rates of leakage. The wearable microfluidic technologies and smartphone-based analytics reported here establish the foundation for diagnosis of CF outside of clinical settings.


Assuntos
Fibrose Cística , Suor , Cloretos , Fibrose Cística/diagnóstico , Fibrose Cística/terapia , Humanos , Lactente , Qualidade de Vida , Smartphone
6.
Lab Chip ; 20(23): 4391-4403, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33089837

RESUMO

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.


Assuntos
Técnicas Biossensoriais , Suor , Eletrônica , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Pele
7.
Proc Natl Acad Sci U S A ; 117(45): 27906-27915, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106394

RESUMO

Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.


Assuntos
Técnicas Biossensoriais/instrumentação , Microfluídica/métodos , Suor/química , Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Impedância Elétrica , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Fluorometria , Humanos , Imunoensaio , Dispositivos Lab-On-A-Chip , Pele/química , Dispositivos Eletrônicos Vestíveis
8.
Nat Med ; 26(3): 418-429, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161411

RESUMO

Standard clinical care in neonatal and pediatric intensive-care units (NICUs and PICUs, respectively) involves continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, can involve catheter-based pressure sensors inserted into the arteries. These systems entail risks of causing iatrogenic skin injuries, complicating clinical care and impeding skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to existing clinical standards for heart rate, respiration rate, temperature and blood oxygenation, but also provides a range of important additional features, as supported by data from pilot clinical studies in both the NICU and PICU. These new modalities include tracking movements and body orientation, quantifying the physiological benefits of skin-to-skin care, capturing acoustic signatures of cardiac activity, recording vocal biomarkers associated with tonality and temporal characteristics of crying and monitoring a reliable surrogate for systolic blood pressure. These platforms have the potential to substantially enhance the quality of neonatal and pediatric critical care.


Assuntos
Técnicas Biossensoriais , Unidades de Terapia Intensiva Neonatal , Unidades de Terapia Intensiva Pediátrica , Monitorização Fisiológica , Pele/anatomia & histologia , Tecnologia sem Fio , Monitorização Ambulatorial da Pressão Arterial , Criança , Pré-Escolar , Eletrocardiografia , Desenho de Equipamento , Humanos , Recém-Nascido , Fotopletismografia , Fatores de Tempo
9.
Lab Chip ; 20(1): 84-92, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31776526

RESUMO

Eccrine sweat is a rich and largely unexplored biofluid that contains a range of important biomarkers, from electrolytes, metabolites, micronutrients and hormones to exogenous agents, each of which can change in concentration with diet, stress level, hydration status and physiologic or metabolic state. Traditionally, clinicians and researchers have used absorbent pads and benchtop analyzers to collect and analyze the biochemical constituents of sweat in controlled, laboratory settings. Recently reported wearable microfluidic and electrochemical sensing devices represent significant advances in this context, with capabilities for rapid, in situ evaluations, in many cases with improved repeatability and accuracy. A limitation is that assays performed in these platforms offer limited control of reaction kinetics and mixing of different reagents and samples. Here, we present a multi-layered microfluidic device platform with designs that eliminate these constraints, to enable integrated enzymatic assays with demonstrations of in situ analysis of the concentrations of ammonia and ethanol in microliter volumes of sweat. Careful characterization of the reaction kinetics and their optimization using statistical techniques yield robust analysis protocols. Human subject studies with sweat initiated by warm-water bathing highlight the operational features of these systems.


Assuntos
Oxirredutases do Álcool/metabolismo , Amônia/análise , Etanol/análise , Peroxidase do Rábano Silvestre/metabolismo , Dispositivos Lab-On-A-Chip , Suor/química , Amônia/metabolismo , Etanol/metabolismo , Voluntários Saudáveis , Humanos , Cinética , Suor/metabolismo
10.
ACS Sens ; 4(2): 379-388, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30707572

RESUMO

Real-time measurements of the total loss of sweat, the rate of sweating, the temperature of sweat, and the concentrations of electrolytes and metabolites in sweat can provide important insights into human physiology. Conventional methods use manual collection processes (e.g., absorbent pads) to determine sweat loss and lab-based instrumentation to analyze its chemical composition. Although such schemes can yield accurate data, they cannot be used outside of laboratories or clinics. Recently reported wearable electrochemical devices for sweat sensing bypass these limitations, but they typically involve on-board electronics, electrodes, and/or batteries for measurement, signal processing, and wireless transmission, without direct means for measuring sweat loss or capturing and storing small volumes of sweat. Alternative approaches exploit soft, skin-integrated microfluidic systems for collection and colorimetric chemical techniques for analysis. Here, we present the most advanced platforms of this type, in which optimized chemistries, microfluidic designs, and device layouts enable accurate assessments not only of total loss of sweat and sweat rate but also of quantitatively accurate values of the pH and temperature of sweat, and of the concentrations of chloride, glucose, and lactate across physiologically relevant ranges. Color calibration markings integrated into a graphics overlayer allow precise readout by digital image analysis, applicable in various lighting conditions. Field studies conducted on healthy volunteers demonstrate the full capabilities in measuring sweat loss/rate and analyzing multiple sweat biomarkers and temperature, with performance that quantitatively matches that of conventional lab-based measurement systems.


Assuntos
Colorimetria/instrumentação , Dispositivos Lab-On-A-Chip , Pele , Suor/química , Temperatura , Biomarcadores/análise , Humanos , Limite de Detecção , Fenômenos Mecânicos
11.
Proc Natl Acad Sci U S A ; 115(44): 11144-11149, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322935

RESUMO

Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.


Assuntos
Artérias/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Fluxo Pulsátil/fisiologia , Determinação da Pressão Arterial/métodos , Eletrocardiografia/métodos , Humanos , Monitorização Fisiológica/métodos , Análise de Onda de Pulso/métodos
12.
Small ; 14(45): e1802876, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30300469

RESUMO

Sweat excretion is a dynamic physiological process that varies with body position, activity level, environmental factors, and health status. Conventional means for measuring the properties of sweat yield accurate results but their requirements for sampling and analytics do not allow for use in the field. Emerging wearable devices offer significant advantages over existing approaches, but each has significant drawbacks associated with bulk and weight, inability to quantify volumetric sweat rate and loss, robustness, and/or inadequate accuracy in biochemical analysis. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication to electronic devices with capabilities in near field communications (NFC), including most smartphones. The platform exploits ultrathin electrodes integrated within a collection of microchannels as interfaces to circuits that leverage NFC protocols. The resulting capabilities are complementary to those of previously reported colorimetric strategies. Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects exercising and at rest establish the key operational features and their utility in sweat analytics.


Assuntos
Eletrônica/métodos , Microfluídica/métodos , Animais , Eletrólitos/química , Humanos , Pele/química , Suor/química
13.
Langmuir ; 34(41): 12244-12250, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30199255

RESUMO

Silicone elastomers such as polydimethylsiloxane (PDMS) are convenient materials routinely used in laboratories that combine ease of preparation, flexibility, transparency, and gas permeability. However, these elastomers are known to contain a small fraction of uncrosslinked low-molecular-weight oligomers, the effects of which are not completely understood, particularly when used in contact with liquids. Here, we show that triple lines involving air, water, and PDMS elastomers are responsible for the contamination of water-air interfaces by uncrosslinked silicone oligomers through a capillarity-induced extraction mechanism. We investigate both the case of static and moving contact lines and study various geometries ranging from partially immersed PDMS plates to water droplets or air bubbles deposited on PDMS plates, all involving air-water-elastomer triple lines. We demonstrate experimentally that the contamination timescale is strikingly shorter for moving contact lines than in the static case. Eventually, we propose a simple poroelastic model capturing the main features of contamination observed in experiments.

14.
Science ; 360(6386): 296-299, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29674588

RESUMO

Soft deformable materials are needed for applications such as stretchable electronics, smart textiles, or soft biomedical devices. However, the design of a durable, cost-effective, or biologically compatible version of such a material remains challenging. Living animal cells routinely cope with extreme deformations by unfolding preformed membrane reservoirs available in the form of microvilli or membrane folds. We synthetically mimicked this behavior by creating nanofibrous liquid-infused tissues that spontaneously form similar reservoirs through capillarity-induced folding. By understanding the physics of membrane buckling within the liquid film, we developed proof-of-concept conformable chemical surface treatments and stretchable basic electronic circuits.

15.
Soft Matter ; 13(19): 3484-3491, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28440371

RESUMO

We report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet. The sharp speed change is shown to coincide with an abrupt transition in surface tension of the droplets, when a critical surface concentration in uncrosslinked oligomer chains is reached. We infer that a droplet shifts to a second regime with a faster speed when it is completely covered with a homogeneous oil film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA