Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
3.
Mol Psychiatry ; 27(3): 1805-1815, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165396

RESUMO

Sensorimotor information processing underlies normal cognitive and behavioral traits and has classically been evaluated through prepulse inhibition (PPI) of a startle reflex. PPI is a behavioral dimension deregulated in several neurological and psychiatric disorders, yet the mechanisms underlying the cross-diagnostic nature of PPI deficits across these conditions remain to be understood. To identify circuitry mechanisms for PPI, we performed circuitry recording over the prefrontal cortex and striatum, two brain regions previously implicated in PPI, using wild-type (WT) mice compared to Disc1-locus-impairment (LI) mice, a model representing neuropsychiatric conditions. We demonstrated that the corticostriatal projection regulates neurophysiological responses during the PPI testing in WT, whereas these circuitry responses were disrupted in Disc1-LI mice. Because our biochemical analyses revealed attenuated brain-derived neurotrophic factor (Bdnf) transport along the corticostriatal circuit in Disc1-LI mice, we investigated the potential role of Bdnf in this circuitry for regulation of PPI. Virus-mediated delivery of Bdnf into the striatum rescued PPI deficits in Disc1-LI mice. Pharmacologically augmenting Bdnf transport by chronic lithium administration, partly via phosphorylation of Huntingtin (Htt) serine-421 and its integration into the motor machinery, restored striatal Bdnf levels and rescued PPI deficits in Disc1-LI mice. Furthermore, reducing the cortical Bdnf expression negated this rescuing effect of lithium, confirming the key role of Bdnf in lithium-mediated PPI rescuing. Collectively, the data suggest that striatal Bdnf supply, collaboratively regulated by Htt and Disc1 along the corticostriatal circuit, is involved in sensorimotor gating, highlighting the utility of dimensional approach in investigating pathophysiological mechanisms across neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corpo Estriado , Proteínas do Tecido Nervoso , Córtex Pré-Frontal , Inibição Pré-Pulso , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia
5.
Prostate Cancer ; 2019: 8107807, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275657

RESUMO

OBJECTIVES: To investigate the added value of assessing transcripts for the long cAMP phosphodiesterase-4D (PDE4D) isoforms, PDE4D5 and PDE4D9, regarding the prognostic power of the 'CAPRA & PDE4D7' combination risk model to predict longitudinal postsurgical biological outcomes in prostate cancer. PATIENTS AND METHODS: RNA was extracted from both biopsy punches of resected tumours (606 patients; RP cohort) and diagnostic needle biopsies (168 patients; DB cohort). RT-qPCR was performed in order to determine PDE4D5, PDE4D7, and PDE4D9 transcript scores in both study cohorts. By RNA sequencing, we determined the TMPRSS2-ERG fusion status of each tumour sample in the RP cohort. Kaplan-Meier survival analyses were then applied to correlate the PDE4D5, PDE4D7 and PDE4D9 scores with postsurgical patient outcomes. Logistic regression was then used to combine the clinical CAPRA score with PDE4D5, PDE4D7, and PDE4D9 scores in order to build a 'CAPRA & PDE4D5/7/9' regression model. ROC and decision curve analysis was used to estimate the net benefit of the 'CAPRA & PDE4D5/7/9' risk model. RESULTS: Kaplan-Meier survival analysis, on the RP cohort, revealed a significant association of the PDE4D7 score with postsurgical biochemical recurrence (BCR) in the presence of the TMPRSS2-ERG gene rearrangement (logrank p<0.0001), compared to the absence of this gene fusion event (logrank p=0.08). In contrast, the PDE4D5 score was only significantly associated with BCR in TMPRSS2-ERG fusion negative tumours (logrank p<0.0001 vs. logrank p=0.4 for TMPRSS2-ERG+ tumours). This was similar for the PDE4D9 score although less pronounced compared to that of the PDE4D5 score (TMPRSS2ERG- logrank p<0.0001 vs. TMPRSS2ERG+ logrank p<0.005). In order to predict BCR after primary treatment, we undertook ROC analysis of the logistic regression combination model of the CAPRA score with the PDE4D5, PDE4D7, and PDE4D9 scores. For the DB cohort, this demonstrated significant differences in the AUC between the CAPRA and the PDE4D5/7/9 regression model vs. the CAPRA and PDE4D7 risk model (AUC 0.87 vs. 0.82; p=0.049) vs. the CAPRA score alone (AUC 0.87 vs. 0.77; p=0.005). The CAPRA and PDE4D5/7/9 risk model stratified 19.2% patients of the DB cohort to either 'no risk of biochemical relapse' (NPV 100%) or the 'start of any secondary treatment (NPV 100%)', over a follow-up period of up to 15 years. Decision curve analysis presented a clear, net benefit for the use of the novel CAPRA & PDE4D5/7/9 risk model compared to the clinical CAPRA score alone or the CAPRA and PDE4D7 model across all decision thresholds. CONCLUSION: Association of the long PDE4D5, PDE4D7, and PDE4D9 transcript scores to prostate cancer patient outcome, after primary intervention, varies in opposite directions depending on the TMPRSS2-ERG genomic fusion background of the tumour. Adding transcript scores for the long PDE4D isoforms, PDE4D5 and PDE4D9, to our previously presented combination risk model of the combined 'CAPRA & PDE4D7' score, in order to generate the CAPRA and PDE4D5/7/9 score, significantly improves the prognostic power of the model in predicting postsurgical biological outcomes in prostate cancer patients.

6.
Proc Natl Acad Sci U S A ; 116(27): 13320-13329, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209056

RESUMO

Cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) enzymes degrade cAMP and underpin the compartmentalization of cAMP signaling through their targeting to particular protein complexes and intracellular locales. We describe the discovery and characterization of a small-molecule compound that allosterically activates PDE4 long isoforms. This PDE4-specific activator displays reversible, noncompetitive kinetics of activation (increased Vmax with unchanged Km), phenocopies the ability of protein kinase A (PKA) to activate PDE4 long isoforms endogenously, and requires a dimeric enzyme assembly, as adopted by long, but not by short (monomeric), PDE4 isoforms. Abnormally elevated levels of cAMP provide a critical driver of the underpinning molecular pathology of autosomal dominant polycystic kidney disease (ADPKD) by promoting cyst formation that, ultimately, culminates in renal failure. Using both animal and human cell models of ADPKD, including ADPKD patient-derived primary cell cultures, we demonstrate that treatment with the prototypical PDE4 activator compound lowers intracellular cAMP levels, restrains cAMP-mediated signaling events, and profoundly inhibits cyst formation. PDE4 activator compounds thus have potential as therapeutics for treating disease driven by elevated cAMP signaling as well as providing a tool for evaluating the action of long PDE4 isoforms in regulating cAMP-mediated cellular processes.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Cães , Ativação Enzimática/efeitos dos fármacos , Humanos , Células Madin Darby de Rim Canino , Fosforilação , Doenças Renais Policísticas/metabolismo , Isoformas de Proteínas
7.
Transl Psychiatry ; 9(1): 141, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076569

RESUMO

Obesity is associated with an increased risk of depression. The aim of the present study was to investigate whether obesity is a causative factor for the development of depression and what is the molecular pathway(s) that link these two disorders. Using lipidomic and transcriptomic methods, we identified a mechanism that links exposure to a high-fat diet (HFD) in mice with alterations in hypothalamic function that lead to depression. Consumption of an HFD selectively induced accumulation of palmitic acid in the hypothalamus, suppressed the 3', 5'-cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and increased the concentration of free fatty acid receptor 1 (FFAR1). Deficiency of phosphodiesterase 4A (PDE4A), an enzyme that degrades cAMP and modulates stimulatory regulative G protein (Gs)-coupled G protein-coupled receptor signaling, protected animals either from genetic- or dietary-induced depression phenotype. These findings suggest that dietary intake of saturated fats disrupts hypothalamic functions by suppressing cAMP/PKA signaling through activation of PDE4A. FFAR1 inhibition and/or an increase of cAMP signaling in the hypothalamus could offer potential therapeutic targets to counteract the effects of dietary or genetically induced obesity on depression.


Assuntos
AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Depressão/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/fisiopatologia , Obesidade/fisiopatologia , Animais , Comportamento Animal , Depressão/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Transdução de Sinais
8.
Clin Sci (Lond) ; 133(2): 269-286, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30683712

RESUMO

Increased PSA-based screening for prostate cancer has resulted in a growing number of diagnosed cases. However, around half of these are 'indolent', neither metastasizing nor leading to disease specific death. Treating non-progressing tumours with invasive therapies is currently regarded as unnecessary over-treatment with patients being considered for conservative regimens, such as active surveillance (AS). However, this raises both compliance and protocol issues. Great clinical benefit could accrue from a biomarker able to predict long-term patient outcome accurately at the time of biopsy and initial diagnosis. Here we delineate the translation of a laboratory discovery through to the precision development of a clinically validated, novel prognostic biomarker assay (InformMDx™). This centres on determining transcript levels for phosphodiesterase-4D7 (PDE4D7), an enzyme that breaks down cyclic AMP, a signalling molecule intimately connected with proliferation and androgen receptor function. Quantifiable detection of PDE4D7 mRNA transcripts informs on the longitudinal outcome of post-surgical disease progression. The risk of post-surgical progression increases steeply for patients with very low 'PDE4D7 scores', while risk decreases markedly for those patients with very high 'PDE4D7 scores'. Combining clinical risk variables, such as the Gleason or CAPRA (Cancer of the Prostate Risk Assessment) score, with the 'PDE4D7 score' further enhances the prognostic power of this personalized, precision assessment. Thus the 'PDE4D7 score' has the potential to define, more effectively, appropriate medical intervention/AS strategies for individual prostate cancer patients.


Assuntos
Biomarcadores Tumorais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Neoplasias da Próstata/diagnóstico , RNA Mensageiro/genética , Animais , Progressão da Doença , Humanos , Masculino , Valor Preditivo dos Testes , Prostatectomia/efeitos adversos , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Fatores de Risco , Pesquisa Translacional Biomédica , Resultado do Tratamento
9.
Transl Psychiatry ; 8(1): 184, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190480

RESUMO

The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-methyl-D-aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of the translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether, our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Translocação Genética , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas de Transporte/genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Modelos Animais , Transtornos do Humor/genética , Mutação , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética , Análise de Sequência de RNA , Sinapses/metabolismo
10.
Prostate Cancer ; 2018: 5821616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147955

RESUMO

Purpose. To further validate the prognostic power of the biomarker PDE4D7, we investigated the correlation of PDE4D7 scores adjusted for presurgical clinical variables with longitudinal postsurgical biological outcomes. Methods. RNA was extracted from biopsy punches of resected tumors (550 patients; RP cohort) and diagnostic needle biopsies (168 patients; DB cohort). Cox regression and survival were applied to correlate PDE4D7 scores with patient outcomes. Logistic regression was used to combine the clinical CAPRA score with PDE4D7. Results. In univariate analysis, the PDE4D7 score was significantly associated with PSA recurrence after prostatectomy in both studied patient cohorts' analysis (HR 0.53; 95% CI 0.41-0.67; p<1.0E-04 and HR 0.47; 95% CI 0.33-0.65; p<1.0E-04, respectively). After adjustment for the presurgical clinical variables preoperative PSA, PSA density, biopsy Gleason, clinical stage, percentage tumor in the biopsy (data only available for RP cohort), and percentage of positive biopsies, the HR was 0.49 (95% CI 0.38-0.64; p<1.0E-04) and 0.43 (95% CI 0.29-0.63; p<1.0E-04), respectively. The addition of the PDE4D7 to the clinical CAPRA score increased the AUC by 5% over the CAPRA score alone (0.82 versus 0.77; p=0.004). This combination model stratified 14.6% patients of the DB cohort to no risk of biochemical relapse (NPV 100%) over a follow-up period of up to 15 years. Conclusions. The PDE4D7 score provides independent risk information for pretreatment risk stratification. Combining CAPRA with PDE4D7 scores significantly improved the clinical risk stratification before surgery.

11.
Eur Urol Focus ; 4(3): 376-384, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28753810

RESUMO

BACKGROUND: The clinical metrics used to date to assess the progression risk of newly diagnosed prostate cancer patients only partly represent the true biological aggressiveness of the underlying disease. OBJECTIVE: Validation of the prognostic biomarker phosphodiesterase-4D7 (PDE4D7) in predicting longitudinal biological outcomes in a historical surgery cohort to improve postsurgical risk stratification. DESIGN, PATIENTS, AND METHODS: RNA was extracted from biopsy punches of resected tumors from 550 patients. PDE4D7 was quantified using one-step quantitative reverse transcription-polymerase chain reaction. PDE4D7 scores were calculated by normalization of PDE4D7 to reference genes. Multivariate analyses were adjusted for clinical prognostic variables. Outcomes tested were: prostate-specific antigen relapse, start of salvage treatment, progression to metastases, overall mortality, and prostate cancer-specific mortality. The PDE4D7 score was combined with the clinical risk model Cancer of the Prostate Risk Assessment Postsurgical Score (CAPRA-S) using multivariate regression modeling; the combined score was tested in post-treatment progression free survival prediction. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Correlations with outcomes were analyzed using multivariate Cox regression and logistic regression statistics. RESULTS AND LIMITATIONS: The PDE4D7 score was significantly associated with time-to-prostate specific antigen failure after prostatectomy (hazard ratio [HR]: 0.53, 95% confidence interval [CI]: 0.41-0.67 for each unit increase, p<0.0001). After adjustment for postsurgical prognostic variables the HR was 0.56 (95% CI: 0.43-0.73, p<0.0001). The PDE4D7 score remained significant after adjusting the multi-variate analysis for the CAPRA-S model categories (HR=0.54, 95% CI=0.42-0.69, p<0.0001). Combination of the PDE4D7 score with the CAPRA-S demonstrated a significant incremental value of 4-6% in 2-yr (p=0.004) or 5-yr (p=0.003) prediction of progression free survival after surgery. The combined model of PDE4D7 and CAPRA-S improves patient selection with very high risk of fast disease relapse after primary intervention. CONCLUSIONS: The PDE4D7 score has the potential to provide independent risk information and to restratify patients with clinical intermediate- to high-risk characteristics to a very low-risk profile. PATIENT SUMMARY: In this report, we studied the potential of a novel biomarker to predict outcomes of a cohort of prostate cancer patients who underwent surgery more than 10 yr ago. We found that a gene called phosphodiesterase-4D7 added extra information to the available clinical data. We conclude that the measurement of this gene in tumor tissue may contribute to more effective treatment decisions.


Assuntos
Monofosfato de Adenosina/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/genética , Biomarcadores/metabolismo , Tomada de Decisão Clínica/métodos , Progressão da Doença , Intervalo Livre de Doença , Seguimentos , Humanos , Masculino , Período Pós-Operatório , Prognóstico , Próstata/patologia , Próstata/cirurgia , Antígeno Prostático Específico/sangue , Prostatectomia/métodos , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Medição de Risco , Terapia de Salvação/métodos
12.
J Clin Invest ; 127(4): 1438-1450, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28263187

RESUMO

Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Doença de Huntington/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Agregação Patológica de Proteínas/enzimologia , Animais , Feminino , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Camundongos Transgênicos , Mutação
13.
Biochem J ; 474(4): 597-609, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27993970

RESUMO

Cyclic AMP (cAMP)-specific phosphodiesterase-4 (PDE4) enzymes underpin compartmentalised cAMP signalling by localising to distinct signalling complexes. PDE4 long isoforms can be phosphorylated by mitogen-activated protein kinase-activated protein kinase 2 (MK2), which attenuates activation of such enzymes through their phosphorylation by protein kinase A. Here we show that MK2 interacts directly with PDE4 long isoforms and define the sites of interaction. One is a unique site that locates within the regulatory upstream conserved region 1 (UCR1) domain and contains a core Phe141, Leu142 and Tyr143 (FLY) cluster (PDE4A5 numbering). Located with the second site is a critical core Phe693, Glu694, Phe695 (FQF) motif that is also employed in the sequestering of PDE4 long forms by an array of other signalling proteins, including the signalling scaffold ß-arrestin, the tyrosyl kinase Lyn, the SUMOylation E2 ligase UBC9, the dynein regulator Lis1 (PAFAH1B1) and the protein kinase Erk. We propose that the FQF motif lies at the heart of a multifunctional docking (MFD) site located within the PDE4 catalytic unit. It is clear from our data that, as well as aiding fidelity of interaction, the MFD site confers exclusivity of binding between PDE4 and a single specific partner protein from the cohort of signalling proteins whose interaction with PDE4 involves the FQF motif.


Assuntos
Domínio Catalítico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/química , 1-Alquil-2-acetilglicerofosfocolina Esterase/química , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , beta-Arrestinas/química , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Quinases da Família src/química , Quinases da Família src/genética , Quinases da Família src/metabolismo
14.
Oncotarget ; 7(43): 70669-70684, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27683107

RESUMO

Phosphodiesterase 4D7 was recently shown to be specifically over-expressed in localized prostate cancer, raising the question as to which regulatory mechanisms are involved and whether other isoforms of this gene family (PDE4D) are affected under the same conditions.We investigated PDE4D isoform composition in prostatic tissues using a total of seven independent expression datasets and also included data on DNA methylation, copy number and AR and ERG binding in PDE4D promoters to gain insight into their effect on PDE4D transcription.We show that expression of PDE4D isoforms is consistently altered in primary human prostate cancer compared to benign tissue, with PDE4D7 being up-regulated while PDE4D5 and PDE4D9 are down-regulated. Disease progression is marked by an overall down-regulation of long PDE4D isoforms, while short isoforms (PDE4D1/2) appear to be relatively unaffected. While these alterations seem to be independent of copy number alterations in the PDE4D locus and driven by AR and ERG binding, we also observed increased DNA methylation in the promoter region of PDE4D5, indicating a long lasting alteration of the isoform composition in prostate cancer tissues.We propose two independent metrics that may serve as diagnostic and prognostic markers for prostate disease: (PDE4D7 - PDE4D5) provides an effective means for distinguishing PCa from normal adjacent prostate, whereas PDE4D1/2 - (PDE4D5 + PDE4D7 + PDE4D9) offers strong prognostic potential to detect aggressive forms of PCa and is associated with metastasis free survival. Overall, our findings highlight the relevance of PDE4D as prostate cancer biomarker and potential drug target.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Metástase Neoplásica/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Biomarcadores Tumorais/genética , Metilação de DNA/genética , Regulação para Baixo , Seguimentos , Dosagem de Genes , Humanos , Isoenzimas/genética , Estimativa de Kaplan-Meier , Masculino , Prognóstico , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Regulador Transcricional ERG/genética , Regulação para Cima
15.
Elife ; 52016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549340

RESUMO

Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.


Assuntos
Região CA1 Hipocampal/fisiologia , Transtornos da Memória , Neurônios/fisiologia , Privação do Sono/complicações , Fatores de Despolimerização de Actina/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Espinhas Dendríticas/fisiologia , Camundongos , Neurônios/citologia
16.
J Neurosci ; 36(34): 8936-46, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27559174

RESUMO

UNLABELLED: Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. SIGNIFICANCE STATEMENT: Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Análise de Variância , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Colforsina/farmacologia , Condicionamento Clássico/fisiologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Medo , Transferência Ressonante de Energia de Fluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Reconhecimento Psicológico/fisiologia , Transdução de Sinais/genética , Transdução Genética , Vasodilatadores/farmacologia
17.
Mol Neuropsychiatry ; 2(1): 20-27, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27525255

RESUMO

DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy of modest evidence in genetics but strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex.

18.
Cell Rep ; 14(2): 255-68, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748707

RESUMO

Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here, we show that the p75 neurotrophin receptor (p75(NTR)) controls energy expenditure in obese mice on a high-fat diet (HFD). Despite no changes in food intake, p75(NTR)-null mice were protected from HFD-induced obesity and remained lean as a result of increased energy expenditure without developing insulin resistance or liver steatosis. p75(NTR) directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75(NTR) or transplantation of p75(NTR)-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75(NTR) to cAMP/PKA regulates energy balance and suggest that non-CNS neurotrophin receptor signaling could be a target for treating obesity and the metabolic syndrome.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Obesidade/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Camundongos , Camundongos Knockout , Transdução de Sinais
19.
Trends Cancer ; 2(4): 163-165, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-28741569

RESUMO

Inhibitors of the cGMP-degrading phosphodiesterase (PDE) 5 have achieved blockbuster status in the treatment of penile erectile dysfunction (PED). Their repurposing is currently being proposed to treat certain solid tumours and various other diseases. In cruel irony, however, it appears from recent clinical studies that PDE5 inhibitors may increase the risk of malignant melanoma by negating newly identified brakes on proliferation and metastasis provided by PDE5A.


Assuntos
Melanoma/patologia , Inibidores da Fosfodiesterase 5/efeitos adversos , Citrato de Sildenafila/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Disfunção Erétil/tratamento farmacológico , Humanos , Masculino , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico
20.
Nat Neurosci ; 18(8): 1094-100, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26192746

RESUMO

The cAMP and cAMP-dependent protein kinase A (PKA) signaling cascade is a ubiquitous pathway acting downstream of multiple neuromodulators. We found that the phosphorylation of phosphodiesterase-4 (PDE4) by cyclin-dependent protein kinase 5 (Cdk5) facilitated cAMP degradation and homeostasis of cAMP/PKA signaling. In mice, loss of Cdk5 throughout the forebrain elevated cAMP levels and increased PKA activity in striatal neurons, and altered behavioral responses to acute or chronic stressors. Ventral striatum- or D1 dopamine receptor-specific conditional knockout of Cdk5, or ventral striatum infusion of a small interfering peptide that selectively targeted the regulation of PDE4 by Cdk5, produced analogous effects on stress-induced behavioral responses. Together, our results demonstrate that altering cAMP signaling in medium spiny neurons of the ventral striatum can effectively modulate stress-induced behavioral states. We propose that targeting the Cdk5 regulation of PDE4 could be a new therapeutic approach for clinical conditions associated with stress, such as depression.


Assuntos
Comportamento Animal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo , Estriado Ventral/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA