Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39320308

RESUMO

Thiophosgene is one of the principal C=S building blocks in synthetic chemistry. At room temperature, thiophosgene is a red liquid. While its properties in the liquid and gaseous states are well known, a comprehensive characterization of thiophosgene in its solid state is presented here. Differential scanning calorimetry shows that thiophosgene forms a supercooled melt before rapidly crystallizing. Its melting point is 231.85 K (-41.3 °C). At 80 K, thiophosgene crystallizes in space group P63/m [No. 174, a = b = 5.9645 (2), c = 6.2835 (3) Å, V = 193.59 (2) Å3]. The molecule shows a distinct rotational disorder: all S and Cl positions are of mixed occupancy and the disorder does not resolve at temperatures as low as 10 K, as was shown by neutron powder diffraction. Infrared, Raman and inelastic neutron scattering spectra were collected and assigned with the aid of quantum chemical calculations. A larger ordered structural model allowed for better agreement between the measured and calculated spectra, further indicating that disorder is an inherent feature of solid-state thiophosgene.

2.
ACS Appl Mater Interfaces ; 16(33): 43512-43525, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39110118

RESUMO

Despite their higher capacity compared to common intercalation- and conversion-type anodes, black phosphorus (BP) based anodes suffer from significant capacity fading attributed to the large volume expansion (∼300%) during lithiation. Downsizing BP into nanosheets has been proposed to mitigate this issue, and various methods, particularly mechanical mixing with graphitic materials (BP-C), have been explored to enhance electrochemical performance. However, the understanding of BP-C hybridization is hindered by the lack of studies focusing on fundamental degradation mechanisms within operational battery environments. Here we address this challenge by employing electrochemical atomic force microscopy (EC-AFM) to study the morphological and mechanical evolution of BP-C composite anodes during lithiation. The results reveal that BP-C binding interactions alone are insufficient to withstand the structural reorganization of BP during its alloying reaction with lithium. Furthermore, the study emphasizes the critical role of the solid electrolyte interphase (SEI) and BP-C interface evolution in determining the long-term performance of these composites, shedding light on the disparity in final electrode morphologies between binder-inclusive and binder-free BP-C composites. These findings provide crucial insights into the challenges associated with BP-based anodes and underscore the need for a deeper understanding of the dynamic behavior within operating cells for the development of stable and high-performance battery materials.

3.
Chem Commun (Camb) ; 60(73): 10001-10004, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39176443

RESUMO

A novel 4 × 4 Wadsley-Roth block phase, Nb9Ti1.5W1.5O30, has been prepared and its structure determined through Neutron and X-ray diffraction studies. Electrochemical testing indicated excellent high rate performance, with a returned delithiation capacity of 184 (4) mA h g-1 at a current of 2 A g-1.

4.
Sci Rep ; 14(1): 16674, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030316

RESUMO

Global optimization techniques are increasingly preferred over human-driven methods in the design of electromagnetic structures such as metasurfaces, and careful construction and parameterization of the physical structure is critical in ensuring computational efficiency and convergence of the optimization algorithm to a globally optimal solution. While many design variables in physical systems take discrete values, optimization algorithms often benefit from a continuous design space. This work demonstrates the use of level set functions as a continuous basis for designing material distributions for metasurface arrays and introduces an improved parameterization which is termed the periodic level set function. We explore the use of alternate norms in the definition of the level set function and define a new pseudo-inverse technique for upsampling basis coefficients with these norms. The level set method is compared to the fragmented parameterization and shows improved electromagnetic responses for two dissimilar cost functions: a narrowband objective and a broadband objective. Finally, we manufacture an optimized level set metasurface and measure its scattering parameters to demonstrate real-world performance.

5.
Nucleic Acids Res ; 52(12): 7367-7383, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38808673

RESUMO

Temperature is an important control factor for biologics biomanufacturing in precision fermentation. Here, we explored a highly responsive low temperature-inducible genetic system (LowTempGAL) in the model yeast Saccharomyces cerevisiae. Two temperature biosensors, a heat-inducible degron and a heat-inducible protein aggregation domain, were used to regulate the GAL activator Gal4p, rendering the leaky LowTempGAL systems. Boolean-type induction was achieved by implementing a second-layer control through low-temperature-mediated repression on GAL repressor gene GAL80, but suffered delayed response to low-temperature triggers and a weak response at 30°C. Application potentials were validated for protein and small molecule production. Proteomics analysis suggested that residual Gal80p and Gal4p insufficiency caused suboptimal induction. 'Turbo' mechanisms were engineered through incorporating a basal Gal4p expression and a galactose-independent Gal80p-supressing Gal3p mutant (Gal3Cp). Varying Gal3Cp configurations, we deployed the LowTempGAL systems capable for a rapid stringent high-level induction upon the shift from a high temperature (37-33°C) to a low temperature (≤30°C). Overall, we present a synthetic biology procedure that leverages 'leaky' biosensors to deploy highly responsive Boolean-type genetic circuits. The key lies in optimisation of the intricate layout of the multi-factor system. The LowTempGAL systems may be applicable in non-conventional yeast platforms for precision biomanufacturing.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Temperatura Baixa , Galactose/metabolismo , Técnicas Biossensoriais
6.
ACS Sens ; 9(6): 2846-2857, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807313

RESUMO

Despite the significant potential of protein biosensors, their construction remains a trial-and-error process. The most obvious approach for addressing this is to utilize modular biosensor architectures where specificity-conferring modalities can be readily generated to recognize new targets. Toward this goal, we established a workflow that uses mRNA display-based selection of hyper-stable monobody domains for the target of choice or ribosome display to select equally stable DARPins. These binders were integrated into a two-component allosteric biosensor architecture based on a calmodulin-reporter chimera. This workflow was tested by developing biosensors for liver toxicity markers such as cytosolic aspartate aminotransferase, mitochondrial aspartate aminotransferase, and alanine aminotransferase 1. We demonstrate that our pipeline consistently produced >103 unique binders for each target within a week. Our analysis revealed that the affinity of the binders for their targets was not a direct predictor of the binder's performance in a biosensor context. The interactions between the binding domains and the reporter module affect the biosensor activity and the dynamic range. We conclude that following binding domain selection, the multiplexed biosensor assembly and prototyping appear to be the most promising approach for identifying biosensors with the desired properties.


Assuntos
Técnicas Biossensoriais , RNA Mensageiro , Técnicas Biossensoriais/métodos , RNA Mensageiro/genética , RNA Mensageiro/análise , Humanos , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo
7.
Int J Nanomedicine ; 19: 3623-3639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660023

RESUMO

Introduction: Despite improvements in chemotherapy and molecularly targeted therapies, the life expectancy of patients with advanced non-small cell lung cancer (NSCLC) remains less than 1 year. There is thus a major global need to advance new treatment strategies that are more effective for NSCLC. Drug delivery using liposomal particles has shown success at improving the biodistribution and bioavailability of chemotherapy. Nevertheless, liposomal drugs lack selectivity for the cancer cells and have a limited ability to penetrate the tumor site, which severely limits their therapeutic potential. Epidermal growth factor receptor (EGFR) is overexpressed in NSCLC tumors in about 80% of patients, thus representing a promising NSCLC-specific target for redirecting liposome-embedded chemotherapy to the tumor site. Methods: Herein, we investigated the targeting of PEGylated liposomal doxorubicin (Caelyx), a powerful off-the-shelf antitumoral liposomal drug, to EGFR as a therapeutic strategy to improve the specific delivery and intratumoral accumulation of chemotherapy in NSCLC. EGFR-targeting of Caelyx was enabled through its complexing with a polyethylene glycol (PEG)/EGFR bispecific antibody fragment. Tumor targeting and therapeutic potency of our treatment approach were investigated in vitro using a panel of NSCLC cell lines and 3D tumoroid models, and in vivo in a cell line-derived tumor xenograft model. Results: Combining Caelyx with our bispecific antibody generated uniform EGFR-targeted particles with improved binding and cytotoxic efficacy toward NSCLC cells. Effects were exclusive to cancer cells expressing EGFR, and increments in efficacy positively correlated with EGFR density on the cancer cell surface. The approach demonstrated increased penetration within 3D spheroids and was effective at targeting and suppressing the growth of NSCLC tumors in vivo while reducing drug delivery to the heart. Conclusion: EGFR targeting represents a successful approach to enhance the selectivity and therapeutic potency of liposomal chemotherapy toward NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Doxorrubicina , Receptores ErbB , Neoplasias Pulmonares , Animais , Feminino , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
8.
ACS Photonics ; 11(3): 1244-1251, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38523744

RESUMO

We study the photophysical stability of ensemble near-surface nitrogen vacancy (NV) centers in diamond under vacuum and air. The optically detected magnetic resonance contrast of the NV centers was measured following exposure to laser illumination, showing opposing trends in air compared to vacuum (increasing by up to 9% and dropping by up to 25%, respectively). Characterization using X-ray photoelectron spectroscopy (XPS) suggests a surface reconstruction: In air, atmospheric oxygen adsorption on a surface leads to an increase in NV- fraction, whereas in vacuum, net oxygen desorption increases the NV0 fraction. NV charge state switching is confirmed by photoluminescence spectroscopy. Deposition of ∼2 nm alumina (Al2O3) over the diamond surface was shown to stabilize the NV charge state under illumination in either environment, attributed to a more stable surface electronegativity. The use of an alumina coating on diamond is therefore a promising approach to improve the resilience of NV sensors.

9.
J Control Release ; 367: 806-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341177

RESUMO

High-risk neuroblastoma has poor survival due to treatment failure and off-target side effects of therapy. Small molecule inhibitors have shown therapeutic efficacy at targeting oncogenic cell cycle dysregulators, such as polo-like kinase 1 (PLK1). However, their clinical success is limited by a lack of efficacy and specificity, causing off-target toxicity. Herein, we investigate a new treatment strategy whereby a bispecific antibody (BsAb) with dual recognition of methoxy polyethylene glycol (PEG) and a neuroblastoma cell-surface receptor, epidermal growth factor receptor (EGFR), is combined with a PEGylated small interfering RNA (siRNA) lipid nanoparticle, forming BsAb-nanoparticle RNA-interference complexes for targeted PLK1 inhibition against high-risk neuroblastoma. Therapeutic efficacy of this strategy was explored in neuroblastoma cell lines and a tumor xenograft model. Using ionizable lipid-based nanoparticles as a low-toxicity and clinically safe approach for siRNA delivery, we identified that their complexing with EGFR-PEG BsAb resulted in increases in cell targeting (1.2 to >4.5-fold) and PLK1 gene silencing (>2-fold) against EGFR+ high-risk neuroblastoma cells, and enhancements correlated with EGFR expression on the cells (r > 0.94). Through formulating nanoparticles with PEG-lipids ranging in diffusivity, we further identified a highly diffusible PEG-lipid which provided the most pronounced neuroblastoma cell binding, PLK1 silencing, and significantly reduced cancer growth in vitro in high-risk neuroblastoma cell cultures and in vivo in a tumor-xenograft mouse model of the disease. Together, this work provides an insight on the role of PEG-lipid diffusivity and EGFR targeting as potentially relevant variables influencing the therapeutic efficacy of siRNA nanoparticles in high-risk neuroblastoma.


Assuntos
Nanopartículas , Neuroblastoma , Humanos , Animais , Camundongos , RNA Interferente Pequeno , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/genética , Quinase 1 Polo-Like , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Receptores ErbB/genética , Nanopartículas/química , Proliferação de Células , Lipídeos/farmacologia
10.
Nat Commun ; 15(1): 909, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291342

RESUMO

Low temperature ionic conducting materials such as OH- and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH-/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic conductivity of approximately 0.01 S cm-1 at 90 °C in both water and wet air, which has been demonstrated by direct ammonia fuel cells. Neutron diffraction confirms the presence of OD bonds in the lattice of deuterated SrZr0.8Y0.2O3-δ. The OH- ionic conduction of CaZr0.8Y0.2O3-δ in water was demonstrated by electrolysis of both H218O and D2O. The ionic conductivity of CaZr0.8Y0.2O3-δ in 6 M KOH solution is around 0.1 S cm-1 at 90 °C, 100 times higher than that in pure water, indicating increased OH- ionic conductivity with a higher concentration of feed OH- ions. Density functional theory calculations suggest the diffusion of OH- ions relies on oxygen vacancies and temporarily formed hydrogen bonds. This opens a window to discovering new ceramic ionic conducting materials for near ambient temperature fuel cells, electrolysers and other electrochemical devices.

11.
ACS Nano ; 18(4): 3251-3259, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227818

RESUMO

The phenomenon of pressure-induced emission alterations related to complex excitonic dynamics in 2D lead halide perovskites (LHPs) has gained considerable attention for understanding their structure-property relationship and obtaining inaccessible luminescence under ambient conditions. However, the well-known pressure-induced emissions are limited to the formation of self-trapped excitons (STEs) due to the structural distortion under compression, which goes against the advantage of the highly pure emission of LHPs. Here, the pressure-induced detrapping from STEs to free excitons (FEs) accompanied by the dramatic transition from broadband orangish emission to narrow blue emission has been achieved in chiral 2D LHPs and R- and S-[4MeOPEA]2PbBr4, (4MeOPEA = 4-methoxy-α-methylbenzylammonium). The combined experimental and calculated results reveal that the distortion level of PbBr6 octahedra of R- and S-[4MeOPEA]2PbBr4 exhibits an unusually significant reduction as the applied pressure increases, which leads to decreased electron-phonon coupling and self-trapped energy barrier and consequently enables the detrapping of STEs to FEs. This work illustrates the dramatic exciton transfer in 2D LHPs and highlights the potential for realizing highly efficient and pure light emissions by manipulating the structural distortion via strain engineering.

12.
Nanoscale ; 16(4): 1742-1750, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197428

RESUMO

Phosphorene nanoribbons (PNRs) can be synthesised in intrinsically scalable methods from intercalation of black phosphorus (BP), however, the mechanism of ribbonisation remains unclear. Herein, to investigate the point at which nanoribbons form, we decouple the two key synthesis steps: first, the formation of the BP intercalation compound, and second, the dissolution into a polar aprotic solvent. We find that both the lithium intercalant and the negative charge on the phosphorus host framework can be effectively removed by addition of phenyl cyanide to return BP and investigate whether fracturing to ribbons occurred after the first step. Further efforts to exfoliate mechanically with or without solvent reveal that the intercalation step does not form ribbons, indicating that an interaction between the amidic solvent and the intercalated phosphorus compound plays an important role in the formation of nanoribbons.

13.
ACS Synth Biol ; 13(1): 141-156, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38084917

RESUMO

The variability in phenotypic outcomes among biological replicates in engineered microbial factories presents a captivating mystery. Establishing the association between phenotypic variability and genetic drivers is important to solve this intricate puzzle. We applied a previously developed auxin-inducible depletion of hexokinase 2 as a metabolic engineering strategy for improved nerolidol production in Saccharomyces cerevisiae, and biological replicates exhibit a dichotomy in nerolidol production of either 3.5 or 2.5 g L-1 nerolidol. Harnessing Oxford Nanopore's long-read genomic sequencing, we reveal a potential genetic cause─the chromosome integration of a 2µ sequence-based yeast episomal plasmid, encoding the expression cassettes for nerolidol synthetic enzymes. This finding was reinforced through chromosome integration revalidation, engineering nerolidol and valencene production strains, and generating a diverse pool of yeast clones, each uniquely fingerprinted by gene copy numbers, plasmid integrations, other genomic rearrangements, protein expression levels, growth rate, and target product productivities. Τhe best clone in two strains produced 3.5 g L-1 nerolidol and ∼0.96 g L-1 valencene. Comparable genotypic and phenotypic variations were also generated through the integration of a yeast integrative plasmid lacking 2µ sequences. Our work shows that multiple factors, including plasmid integration status, subchromosomal location, gene copy number, sesquiterpene synthase expression level, and genome rearrangement, together play a complicated determinant role on the productivities of sesquiterpene product. Integration of yeast episomal/integrative plasmids may be used as a versatile method for increasing the diversity and optimizing the efficiency of yeast cell factories, thereby uncovering metabolic control mechanisms.


Assuntos
Saccharomyces cerevisiae , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plasmídeos/genética , Sesquiterpenos/metabolismo , Engenharia Metabólica/métodos
14.
Nat Prod Res ; : 1-6, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073526

RESUMO

The leaves of Monteverdia ilicifolia (syn. Maytenus ilicifolia) are widely used in traditional South American medicine to treat gastrointestinal problems such as gastritis and ulcers. Several herbal products containing the leaves of M. ilicifolia can be found in the market. However, other species with similar leaf morphology are confounding materials, e.g. Monteverdia aquifolia (Celastraceae), Citronella gongonha (Cardiopteridaceae), Jodina rhombifolia (Santalaceae), Sorocea bonplandii (Moraceae) and Zollernia ilicifolia (Fabaceae). This study aimed to identify M. ilicifolia and distinguish it from its potential adulterants using high-performance thin-layer chromatography (HPTLC) technique. Comprehensive HPTLC analysis revealed specific fingerprints that can be used to assess the minimum content of epicatechin and the quality of commercial espinheira-santa samples. The results of the study demonstrated that the HPTLC method is capable of detecting adulterations and distinguishing M. ilicifolia from all confounding materials in commercial products available on the market, showing that most of the products are of poor quality due to adulterations.

15.
Sci Rep ; 13(1): 19741, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957274

RESUMO

Cancers and autoimmune diseases commonly co-exist and immune checkpoint inhibitor therapy (ICI) exacerbates autoimmune pathologies. We recently described a lipidic peptide, designated IK14004, that promotes expansion of immunosuppressive T regulatory (Treg) cells and uncouples interleukin-2 from interferon-gamma production while activating CD8+ T cells. Herein, we report IK14004-mediated inhibition of Lewis lung cancer (LLC) growth and re-invigoration of splenocyte-derived exhausted CD4+ T cells. In human immune cells from healthy donors, IK14004 modulates expression of the T cell receptor α/ß subunits, induces Type I IFN expression, stimulates natural killer (NK) cells to express NKG2D/NKp44 receptors and enhances K562 cytotoxicity. In both T and NK cells, IK14004 alters the IL-12 receptor ß1/ß2 chain ratio to favour IL-12p70 binding. Taken together, this novel peptide offers an opportunity to gain further insight into the complexity of ICI immunotherapy so that autoimmune responses may be minimised without promoting tumour evasion from the immune system.


Assuntos
Doenças Autoimunes , Carcinoma Pulmonar de Lewis , Animais , Humanos , Autoimunidade , Células Matadoras Naturais , Linfócitos T Reguladores , Doenças Autoimunes/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo
16.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20230175, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691460

RESUMO

This themed issue explores the different length and timescales that determine the physics and chemistry of a variety of key of materials, explored from the perspective of a wide range of disciplines, including physics, chemistry materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with this second set of contributions exploring hybrid organic materials, catalysis low-dimensional and graphitic materials, biological materials and naturally occurring, super-hard material as well as dynamic high pressure and new developments in imaging techniques pressure. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

17.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220337, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691462

RESUMO

The crystalline graphitic carbon nitride, poly-triazine imide (PTI) is highly unusual among layered materials since it is spontaneously soluble in aprotic, polar solvents including dimethylformamide (DMF). The PTI material consists of layers of carbon nitride intercalated with LiBr. When dissolved, the resulting solutions consist of dissolved, luminescent single to multilayer nanosheets of around 60-125 nm in diameter and Li+ and Br- ions originating from the intercalating salt. To understand this unique solubility, the structure of these solutions has been investigated by high-energy X-ray and neutron diffraction. Although the diffraction patterns are dominated by inter-solvent correlations there are clear differences between the X-ray diffraction data of the PTI solution and the solvent in the 4-6 Å-1 range, with real space differences persisting to at least 10 Å. Structural modelling using both neutron and X-ray datasets as a constraint reveal the formation of distinct, dense solvation shells surrounding the nanoparticles with a layer of Br-close to the PTI-solvent interface. This solvent ordering provides a configuration that is energetically favourable underpinning thermodynamically driven PTI dissolution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

18.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220339, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691463

RESUMO

Crystalline two-dimensional carbon nitrides with polytriazine imide (PTI) structure are shown to act amphoterically, buffering both HCl and NaOH aqueous solutions, resulting in charged PTI layers that dissolve spontaneously in their aqueous media, particularly for the alkaline solutions. This provides a low energy, green route to their scalable solution processing. Protonation in acid is shown to occur at pyridinic nitrogens, stabilized by adjacent triazines, whereas deprotonation in base occurs primarily at basal plane NH bridges, although NH2 edge deprotonation is competitive. We conclude that mildly acidic or basic pHs are necessary to provide sufficient net charge on the nanosheets to promote dissolution, while avoiding high ion concentrations which screen the repulsion of like-charged PTI sheets in solution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

19.
J Am Chem Soc ; 145(33): 18286-18295, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37551934

RESUMO

Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic-phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic-phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed. The ribbons are typically few-layered, several micrometers long with widths tens of nanometers across, and both highly flexible and crystalline. The AsPNRs are highly electrically conducting above 130 K due to their small band gap (ca. 0.035 eV), paramagnetic in nature, and have high hole mobilities, as measured with the first generation of AsP devices, directly highlighting their properties and utility in electronic devices such as near-infrared detectors, quantum computing, and charge carrier layers in solar cells.

20.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20220353, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37634538

RESUMO

This themed issue explores the different length scales and timescales that determine the physics and chemistry of a variety of key materials, explored from the perspective of a wide range of disciplines, including physics, chemistry, materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with the present part exploring glassy and amorphous systems and materials at high pressure. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA