Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(12): e0052623, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37948307

RESUMO

Pseudomonas strains DVZ6 and DVZ24 were isolated from a sediment trap incubated in an 129I plume at the Hanford Site (Washington State, USA). Whole-genome sequencing of the strains revealed that both genomes are 5.77 Mb in size, with a G + C content of 64.75%.

2.
Microbiol Resour Announc ; 12(11): e0052523, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37830824

RESUMO

Enterobacter hormaechei DVZ29 was isolated from a sediment trap incubated in an 129I plume at the Hanford Site (Washington State, USA). A whole genome sequencing of the strain resulted in 32 contigs and revealed that the genome is 4.90 Mb, with a G + C content of 55.61%.

3.
Front Microbiol ; 13: 852942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495678

RESUMO

Microbial iodate (IO3 -) reduction is a major component of the iodine biogeochemical reaction network in anaerobic marine basins and radioactive iodine-contaminated subsurface environments. Alternative iodine remediation technologies include microbial reduction of IO3 - to iodide (I-) and microbial methylation of I- to volatile gases. The metal reduction pathway is required for anaerobic IO3 - respiration by the gammaproteobacterium Shewanella oneidensis. However, the terminal IO3 - reductase and additional enzymes involved in the S. oneidensis IO3 - electron transport chain have not yet been identified. In this study, gene deletion mutants deficient in four extracellular electron conduits (EECs; ΔmtrA, ΔmtrA-ΔmtrDEF, ΔmtrA-ΔdmsEF, ΔmtrA-ΔSO4360) and DMSO reductase (ΔdmsB) of S. oneidensis were constructed and examined for anaerobic IO3 - reduction activity with either 20 mM lactate or formate as an electron donor. IO3 - reduction rate experiments were conducted under anaerobic conditions in defined minimal medium amended with 250 µM IO3 - as anaerobic electron acceptor. Only the ΔmtrA mutant displayed a severe deficiency in IO3 - reduction activity with lactate as the electron donor, which suggested that the EEC-associated decaheme cytochrome was required for lactate-dependent IO3 - reduction. The ΔmtrA-ΔdmsEF triple mutant displayed a severe deficiency in IO3 - reduction activity with formate as the electron donor, whereas ΔmtrA-ΔmtrDEF and ΔmtrA-ΔSO4360 retained moderate IO3 - reduction activity, which suggested that the EEC-associated dimethylsulfoxide (DMSO) reductase membrane-spanning protein DmsE, but not MtrA, was required for formate-dependent IO3 - reduction. Furthermore, gene deletion mutant ΔdmsB (deficient in the extracellular terminal DMSO reductase protein DmsB) and wild-type cells grown with tungsten replacing molybdenum (a required co-factor for DmsA catalytic activity) in defined growth medium were unable to reduce IO3 - with either lactate or formate as the electron donor, which indicated that the DmsAB complex functions as an extracellular IO3 - terminal reductase for both electron donors. Results of this study provide complementary genetic and phenotypic evidence that the extracellular DMSO reductase complex DmsAB of S. oneidensis displays broad substrate specificity and reduces IO3 - as an alternate terminal electron acceptor.

4.
J Microbiol Methods ; 60(1): 41-6, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15567223

RESUMO

3-Ethynylbenzoate (3EB) functions as a novel, activity-dependent, fluorogenic, and chromogenic probe for bacterial strains expressing the TOL pathway, which degrade toluene via conversion to benzoate, followed by meta ring fission of the intermediate catechol. This direct physiological analysis allows the fluorescent labeling of cells whose toluene-degrading enzymes have been induced by an aromatic substrate.


Assuntos
Benzoatos/metabolismo , Corantes Fluorescentes/metabolismo , Pseudomonas putida/metabolismo , Tolueno/metabolismo , Microscopia de Fluorescência , Oxigenases/metabolismo , Pseudomonas putida/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA