Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 282: 111921, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465721

RESUMO

Finfish aquaculture is a source of dissolved nutrients, which can impact water quality in the wider environment. Therefore, the potential effects of dissolved nutrient loading must be considered if management is to transition towards an Ecosystem Approach to Aquaculture. In this study, the dissolved nitrogen dispersion pattern from a rainbow trout farm in Port Mouton (Nova Scotia, Canada) was simulated and evaluated in the context of potential toxicity for a foundation seagrass species. A range of scenarios defined under a precautionary approach were simulated using a fully spatial hydrodynamic model. These worst-case scenarios predicted a maximum nitrogen concentration at any moment of the day of 7.5 µM, which is below the expected toxicity threshold for seagrass. Further scenarios demonstrated that the increased dispersion caused by the wind could drop these values by 45-50% in the vicinity of the farm, suggesting the relevant role of wind forcing in nitrogen dispersion. This outcome suggests that the decline of seagrass reported in some parts of Port Mouton bay are unlikely to have been triggered by dissolved nutrients discharged from the farm. This case-study demonstrates the value of ecosystem modelling to make science-based and transparent decisions to implement an ecosystem approach to aquaculture.


Assuntos
Ecossistema , Nitrogênio , Animais , Aquicultura , Canadá , Modelos Teóricos , Nitrogênio/análise
2.
Ecol Evol ; 10(14): 7050-7061, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760510

RESUMO

Predicting how species will respond to increased environmental temperatures is key to understanding the ecological consequences of global change. The physiological tolerances of a species define its thermal limits, while its thermal affinity is a summary of the environmental temperatures at the localities at which it actually occurs. Experimentally derived thermal limits are known to be related to observed latitudinal ranges in marine species, but accurate range maps from which to derive latitudinal ranges are lacking for many marine species. An alternative approach is to combine widely available data on global occurrences with gridded global temperature datasets to derive measures of species-level "thermal affinity"-that is, measures of the central tendency, variation, and upper and lower bounds of the environmental temperatures at the locations at which a species has been recorded to occur. Here, we test the extent to which such occupancy-derived measures of thermal affinity are related to the known thermal limits of marine species using data on 533 marine species from 24 taxonomic classes and with experimentally derived critical upper temperatures spanning 2-44.5°C. We show that thermal affinity estimates are consistently and positively related to the physiological tolerances of marine species, despite gaps and biases in the source data. Our method allows thermal affinity measures to be rapidly and repeatably estimated for many thousands more marine species, substantially expanding the potential to assess vulnerability of marine communities to warming seas.

3.
Biol Lett ; 14(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068542

RESUMO

Understanding links between habitat characteristics and foraging efficiency helps predict how environmental changes influence populations of top predators. This study examines whether measurements of prey (clupeids) availability varied over stratification gradients, and determined if any of those measurements coincided with aggregations of foraging seabirds (common guillemot Uria aalge and Manx shearwater Puffinus puffinus) in the Celtic Sea, UK. The probability of encountering foraging seabirds was highest around fronts between mixed and stratified water. Prey were denser and shallower in mixed water, whilst encounters with prey were most frequent in stratified water. Therefore, no single measurement of increased prey availability coincided with the location of fronts. However, when considered in combination, overall prey availability was highest in these areas. These results show that top predators may select foraging habitats by trading-off several measurements of prey availability. By showing that top predators select areas where prey switch between behaviours, these results also identify a mechanism that could explain the wider importance of edge habitats for these taxa. As offshore developments (e.g. marine renewable energy installations) change patterns of stratification, their construction may have consequences on the foraging efficiency of seabirds.


Assuntos
Aves/fisiologia , Ecossistema , Modelos Biológicos , Comportamento Predatório/fisiologia , Distribuição Animal , Animais , Comportamento Animal , Oceanos e Mares , Reino Unido
4.
Mar Environ Res ; 107: 8-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25863362

RESUMO

Despite recent efforts to increase the global coverage of marine protected areas (MPAs), studies investigating the effectiveness of marine protected areas within temperate waters remain scarce. Furthermore, out of the few studies published on MPAs in temperate waters, the majority focus on specific ecological or fishery components rather than investigating the ecosystem as a whole. This study therefore investigated the dynamics of both benthic communities and fish populations within a recently established, fully protected marine reserve in Lamlash Bay, Isle of Arran, United Kingdom, over a four year period. A combination of photo and diver surveys revealed live maerl (Phymatolithon calcareum), macroalgae, sponges, hydroids, feather stars and eyelash worms (Myxicola infundibulum) to be significantly more abundant within the marine reserve than on surrounding fishing grounds. Likewise, the overall composition of epifaunal communities in and outside the reserve was significantly different. Both results are consistent with the hypothesis that protecting areas from fishing can encourage seafloor habitats to recover. In addition, the greater abundance of complex habitats within the reserve appeared to providing nursery habitat for juvenile cod (Gadus morhua) and scallops (Pecten maximus and Aequipecten opercularis). In contrast, there was little difference in the abundance of mobile benthic fauna, such as crabs and starfish, between the reserve and outside. Similarly, the use of baited underwater video cameras revealed no difference in the abundance and size of fish between the reserve and outside. Limited recovery of these ecosystem components may be due to the relatively small size (2.67 km(2)) and young age of the reserve (<5 years), both of which might have limited the extent of any benefits afforded to mobile fauna and fish communities. Overall, this study provides evidence that fully protected marine reserves can encourage seafloor habitats to recover, which in turn, can create a number of benefits that flow back to other species, including those of commercial importance.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Análise de Variância , Animais , Biodiversidade , Peixes/fisiologia , Invertebrados/fisiologia , Dinâmica Populacional , Fatores de Tempo , Reino Unido , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA