Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 332: 127422, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32623129

RESUMO

During wheat cultivation, glyphosate-based herbicides are recommended to be applied a week prior to harvest during the ripe stage of physiological maturity. However, some grains may not be at this physiological stage due to non-uniform maturation within the field. The goal of this study was to determine the effect of glyphosate-based herbicide timing on the chemistry of wheat gluten proteins and shikimic acid accumulation. The results of the study indicate that pre-harvest glyphosate application does not impact the amino acid composition, protein secondary structure or gluten protein composition. However, pre-harvest glyphosate application decreased the molecular weight of SDS extractable and unextractable proteins, and significantly increased the amount of shikimic acid accumulation, especially when applied early. Thus, this study indicates that pre-harvest use of glyphosate-based herbicides can cause significant differences in wheat protein chemistry and shikimic acid levels, especially when applied earlier than recommended, emphasizing the importance of timely application.


Assuntos
Glicina/análogos & derivados , Herbicidas/farmacologia , Proteínas de Plantas/metabolismo , Ácido Chiquímico/metabolismo , Triticum/efeitos dos fármacos , Aminoácidos/análise , Aminoácidos/metabolismo , Glutens/análise , Glutens/metabolismo , Glicina/farmacologia , Proteínas de Plantas/análise , Ácido Chiquímico/análise , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Glifosato
2.
J Food Biochem ; 44(8): e13330, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557639

RESUMO

The objective of this study was to determine if the pre-harvest glyphosate application time affects the chemistry of wheat starch. Glyphosate was sprayed at the ripe stage (recommended) and the soft dough stage (early application) of hard red spring wheat. Wheat kernel samples were collected before application and every 3 days until harvest, after which different starch characteristics were analyzed. The results indicate that glyphosate timing does not impact the spatial distribution or morphology of starch granules, as well as the percentage or molecular weight of amylose and amylopectin. However, thermal characteristics of wheat starch, especially when glyphosate was applied at the soft dough stage, showed significant differences. A decrease in the average amylopectin chain length and differences in the proportion of short-, medium-, and long-chain amylopectin was also observed. Overall, this study shows that the pre-harvest application of glyphosate can affect wheat starch chemistry, especially if applied earlier than recommended. PRACTICAL APPLICATIONS: Glyphosate is the most commonly used herbicide in the world, and it is sometimes used pre-harvest during wheat cultivation. The recommended time of application is 7 days prior to harvest when the crops are in the ripe stage of physiological maturity. However, some crops may not be at this stage during application due to non-uniform maturation in the field. The goal of this work was to determine the effect of glyphosate application time (recommended/ripe stage vs. early/soft dough stage) on wheat starch chemistry. The results show that the starch chain length characteristics and thermal behavior are impacted, especially if applied early. Thus, this study shows the importance of timely application to avoid effects on starch chemical properties, which in return could impact starch functionality in food systems. This information is critical in the field of agriculture and to our knowledge this study is one of the first in this area.


Assuntos
Amido , Triticum , Amilopectina , Glicina/análogos & derivados , Glifosato
3.
Pest Manag Sci ; 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29536620

RESUMO

BACKGROUND: Pesticide applications using a specific droplet size and carrier volume could maximize herbicide efficacy while mitigating particle drift in a precise and efficient manner. The objectives of this study were to investigate the influence of spray droplet size and carrier volume on dicamba and glufosinate efficacy, and to determine the plausibility of droplet-size based site-specific weed management strategies. RESULTS: Generally, across herbicides and carrier volumes, as droplet size increased, weed control decreased. Increased carrier volume (187 L ha-1 ) buffered this droplet size effect, thus greater droplet sizes could be used to mitigate drift potential while maintaining sufficient levels of weed control. To mitigate drift potential and achieve satisfactory weed control (≥ 90% of maximum observed control), a 900 µm (Ultra Coarse) droplet size paired with 187 L ha-1 carrier volume is recommended for dicamba applications and a 605 µm (Extremely Coarse) droplet size across carrier volumes is recommended for glufosinate applications. Although general droplet size recommendations were created, optimum droplet sizes for weed control varied significantly across site-years. CONCLUSION: Convoluted interactions occur between droplet size, carrier volume, and other application parameters. Recommendations for optimizing herbicide applications based on droplet size should be based on a site-specific management approach to better account for these interactions. © 2018 Society of Chemical Industry.

4.
J Agric Food Chem ; 51(14): 4004-7, 2003 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12822937

RESUMO

Glyphosate is a nonselective herbicide used as a harvest aid in a variety of crops. Glyphosate is absorbed into the foliage and translocated to metabolically active regions in the plant where it interferes with the shikimic acid pathway. Experiments were conducted to determine the accumulation and distribution of shikimic acid in wheat treated with glyphosate at soft and hard dough stages of kernel development and to determine the fate of shikimic acid during milling and bread making. Elevated levels of shikimic acid were detected throughout the wheat plant. Shikimic acid concentrations peaked 3-7 days after treatment and then declined until harvest. Shikimic acid content was 3-fold greater in flour and 2-fold greater in the bread derived from treated wheat than nontreated wheat. Similarly, elevated levels of shikimic acid were found in the crumbs and crust of bread made with flour from glyphosate treated wheat. Glyphosate applied preharvest resulted in shikimic acid accumulation in hard red spring wheat and subsequent end-use products.


Assuntos
Glicina/análogos & derivados , Glicina/administração & dosagem , Herbicidas/administração & dosagem , Ácido Chiquímico/análise , Triticum/química , Cinética , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Sementes/química , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA