Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(5): 053803, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595228

RESUMO

We probe the fundamental underpinnings of range resolution in coherent remote sensing. We use a novel class of self-referential interference functions to show that we can greatly improve upon currently accepted bounds for range resolution. We consider the range resolution problem from the perspective of single-parameter estimation of amplitude versus the traditional temporally resolved paradigm. We define two figures of merit: (i) the minimum resolvable distance between two depths and (ii) for temporally subresolved peaks, the depth resolution between the objects. We experimentally demonstrate that our system can resolve two depths greater than 100× the inverse bandwidth and measure the distance between two objects to approximately 20 µm (35 000 times smaller than the Rayleigh-resolved limit) for temporally subresolved objects using frequencies less than 120 MHz radio waves.

2.
Phys Rev Lett ; 129(11): 113901, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154427

RESUMO

We consider the fundamental roles of frequency versus phase in parameter estimation, specifically in the Sagnac effect. We describe a novel, ultrasensitive gyroscope based on the extremely steep frequency-dependent gain of a liquid crystal light valve. We provide compelling experimental evidence that the Doppler shift is fundamental in the Sagnac effect giving clarity to a long-debated question. We experimentally show orders of magnitude improvement in sensitivity relative to the standard quantum limit of a gyroscope based on phase estimation.

3.
Opt Lett ; 44(2): 355-358, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644898

RESUMO

The measurement of extremely small displacements is of utmost importance for fundamental studies and practical applications. One way to estimate a small displacement is to measure the Doppler shift generated in light reflected off a moving object, converting a displacement measurement into a frequency measurement. Here we show a sensitive device capable of measuring µHz/Hz Doppler frequency shifts corresponding to tens of femtometer displacements for a mirror oscillating at 2 Hz. While the Doppler shift measured is comparable to other techniques, the position sensitivity is orders of magnitude better, and operates over several orders of magnitude of Doppler frequency range. In addition, unlike other interferometric techniques, our device is phase insensitive, making it unusually robust to noise.

4.
Opt Express ; 26(12): 15420-15435, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114804

RESUMO

We present an inexpensive architecture for converting a frequency-modulated continuous-wave LiDAR system into a compressive-sensing based depth-mapping camera. Instead of raster scanning to obtain depth-maps, compressive sensing is used to significantly reduce the number of measurements. Ideally, our approach requires two difference detectors. Due to the large flux entering the detectors, the signal amplification from heterodyne detection, and the effects of background subtraction from compressive sensing, the system can obtain higher signal-to-noise ratios over detector-array based schemes while scanning a scene faster than is possible through raster-scanning. Moreover, by efficiently storing only 2m data points from m < n measurements of an n pixel scene, we can easily extract depths by solving only two linear equations with efficient convex-optimization methods.

5.
Appl Opt ; 57(16): 4472-4476, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877395

RESUMO

We create an optical frequency, polarization-independent, narrow bandpass filter of 1.3 GHz (3 dB bandwidth), using the steep dispersion near the rubidium D1 atomic transitions within a prism-shaped vapor cell. This enables us to clean the amplified spontaneous emission from a laser by more than 3 orders of magnitude. Such a filter could find uses in fields such as quantum information processing and Raman spectroscopy.

6.
Opt Lett ; 42(13): 2479-2482, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957263

RESUMO

We present an interferometric technique for measuring ultrasmall tilts. The information of a tilt in one of the mirrors of a modified Sagnac interferometer is carried by the phase difference between the counter-propagating laser beams. Using a small misalignment of the interferometer, orthogonal to the plane of the tilt, a bimodal (or two-fringe) pattern is induced in the beam's transverse power distribution. By tracking the mean of such a distribution, using a split detector, a sensitive measurement of the phase is performed. With 1.2 mW of continuous-wave laser power, the technique has a shot noise limited sensitivity of 56 frad/Hz and a measured noise floor of 200 frad/Hz for tilt frequencies above 2 Hz. A tilt of 200 frad corresponds to a differential displacement of 4.0 fm in our setup. The novelty of the protocol relies on signal amplification due to the misalignment and on good performance at low frequencies. A noise floor of about 70 prad/Hz is observed between 2 and 100 mHz.

7.
Opt Lett ; 42(5): 903-906, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248327

RESUMO

We propose precision measurements of ultra-small angular velocities of a mirror within a modified Sagnac interferometer, where the counter-propagating beams are spatially separated, using the recently proposed technique of almost-balanced weak values amplification (ABWV) [Phys. Rev. Lett.116, 100803 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.100803]. The separation between the two beams provides additional amplification with respect to using collinear beams in a Sagnac interferometer. Within the same setup, the weak-value amplification technique is also performed for comparison. Much higher amplification factors can be obtained using the almost-balanced weak values technique, with the best one achieved in our experiments being as high as 1.2×107. In addition, the amplification factor monotonically increases with decreasing of the post-selection phase for the ABWV case in our experiments, which is not the case for weak-value amplification (WVA) at small post-selection phases. Both techniques consist of measuring the angular velocity. The sensitivity of the ABWV technique is ∼38 nrad/s per averaged pulse for a repetition rate of 1 Hz and ∼33 nrad/s per averaged pulse for the WVA technique.

8.
Phys Rev Lett ; 116(10): 100803, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015468

RESUMO

We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31093584

RESUMO

Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded in a quantum system, the phenomenon of quantum data locking allows one to encrypt a message with a shorter key and still provide information-theoretic security. We present one of the first feasible experimental demonstrations of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) with less than 6 bits per photon of encryption key while remaining information-theoretically secure.

10.
Opt Express ; 23(21): 27636-49, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480426

RESUMO

We demonstrate how to efficiently implement extremely high-dimensional compressive imaging of a bi-photon probability distribution. Our method uses fast-Hadamard-transform Kronecker-based compressive sensing to acquire the joint space distribution. We list, in detail, the operations necessary to enable fast-transform-based matrix-vector operations in the joint space to reconstruct a 16.8 million-dimensional image in less than 10 minutes. Within a subspace of that image exists a 3.2 million-dimensional bi-photon probability distribution. In addition, we demonstrate how the marginal distributions can aid in the accuracy of joint space distribution reconstructions.

11.
Opt Express ; 23(12): 15857-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193564

RESUMO

We complete the 'paraxial' (small-angle) ray optics cloaking formalism presented previously [Opt. Express 22, 29465 (2014)], by extending it to the full-field of light. Omnidirectionality is then the only relaxed parameter of what may be considered an ideal, broadband, field cloak. We show that an isotropic plate of uniform thickness, with appropriately designed refractive index and dispersion, can match the phase over the whole visible spectrum. Our results support the fundamental limits on cloaking for broadband vs. omnidirectionality, and provide insights into when anisotropy may be required.

12.
Phys Rev Lett ; 114(17): 170801, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978218

RESUMO

We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in all the light exiting to the detector with a large deflection, thus eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal, using a transverse beam filter and different cavity designs.

13.
Opt Express ; 22(16): 18870-80, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25320973

RESUMO

We demonstrate a wavefront sensor that unites weak measurement and the compressive-sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field's transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the wavefront's real and imaginary components. Compressive-sensing optimization techniques can then recover the wavefront. We acquire high quality, 256 × 256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity.

14.
Phys Rev Lett ; 112(25): 253602, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014815

RESUMO

The more information a measurement provides about a quantum system's position statistics, the less information a subsequent measurement can provide about the system's momentum statistics. This information trade-off is embodied in the entropic formulation of the uncertainty principle. Traditionally, uncertainly relations correspond to resolution limits; increasing a detector's position sensitivity decreases its momentum sensitivity and vice versa. However, this is not required in general; for example, position information can instead be extracted at the cost of noise in momentum. Using random, partial projections in position followed by strong measurements in momentum, we efficiently determine the transverse-position and transverse-momentum distributions of an unknown optical field with a single set of measurements. The momentum distribution is directly imaged, while the position distribution is recovered using compressive sensing. At no point do we violate uncertainty relations; rather, we economize the use of information we obtain.

15.
Appl Opt ; 53(9): 1958-63, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24663476

RESUMO

We demonstrate three amplitude cloaks that can hide very large spatial objects over the entire visible spectrum using only passive, off-the-shelf optics. The cloaked region for all of the devices exceeds 106 mm³, with the largest exceeding 108 mm³. Although unidirectional, these cloaks can hide the cloaked object, even if the object is transversely illuminated or self-illuminated. Due to the small usable solid angle, but simple scaling, these cloaks may be of value in hiding small field-of-view objects such as mid- to high-earth orbit satellites from earth-based observation. Active phase front manipulation can also make these cloaks invisible to some forms of image homodyning.

16.
Opt Express ; 22(24): 29465-78, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606881

RESUMO

Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle ('paraxial') limit.


Assuntos
Fenômenos Ópticos , Óptica e Fotônica , Simulação por Computador , Lentes , Modelos Teóricos
17.
Opt Express ; 21(20): 23822-37, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104293

RESUMO

We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

18.
Opt Lett ; 38(16): 2949-52, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24104618

RESUMO

In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400 fm/s and show our estimator to be efficient by reaching its Cramér-Rao bound.

19.
Opt Lett ; 38(16): 3107-10, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24104661

RESUMO

Controlling the group velocity of light is a valuable resource for quantum and classical optical processing and high performance sensor technologies. In this context, slow-light (SL) and the associated steep dispersion have been proposed to increase the sensitivity of certain types of interferometers. Here, we show that the interaction of two intensity-balanced light beams in a SL medium can be used to detect Doppler shifts with extremely high sensitivity. By using this effect in a liquid crystal light-valve, we have been able to measure Doppler shifts as low as 1 µHz with an integration time of only 1 s. The shot noise limited sensitivity inversely depends on the steepness of the beam-coupling dispersive response. This method allows for remote sensing of very slowly moving objects with a linear response over 5 orders of magnitude.

20.
Phys Rev Lett ; 110(17): 170405, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679690

RESUMO

We present a measurement protocol for discriminating between two different quantum states of a qubit with high fidelity. The protocol, called null value, is comprised of a projective measurement performed on the system with a small probability (also known as partial collapse), followed by a tuned postselection. We report on an optical experimental implementation of the scheme. We show that our protocol leads to an amplified signal-to-noise ratio (as compared with a straightforward strong measurement) when discerning between the two quantum states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA