RESUMO
OBJECTIVES: To find and validate generalizable sepsis subtypes using data-driven clustering. DESIGN: We used advanced informatics techniques to pool data from 14 bacterial sepsis transcriptomic datasets from eight different countries (n = 700). SETTING: Retrospective analysis. SUBJECTS: Persons admitted to the hospital with bacterial sepsis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A unified clustering analysis across 14 discovery datasets revealed three subtypes, which, based on functional analysis, we termed "Inflammopathic, Adaptive, and Coagulopathic." We then validated these subtypes in nine independent datasets from five different countries (n = 600). In both discovery and validation data, the Adaptive subtype is associated with a lower clinical severity and lower mortality rate, and the Coagulopathic subtype is associated with higher mortality and clinical coagulopathy. Further, these clusters are statistically associated with clusters derived by others in independent single sepsis cohorts. CONCLUSIONS: The three sepsis subtypes may represent a unifying framework for understanding the molecular heterogeneity of the sepsis syndrome. Further study could potentially enable a precision medicine approach of matching novel immunomodulatory therapies with septic patients most likely to benefit.
Assuntos
Perfilação da Expressão Gênica , Sepse/genética , Imunidade Adaptativa/genética , Adolescente , Adulto , Idoso , Transtornos da Coagulação Sanguínea/genética , Análise por Conglomerados , Conjuntos de Dados como Assunto , Feminino , Humanos , Imunidade Inata/genética , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sepse/microbiologia , Adulto JovemRESUMO
Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.