Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Microbiol Resour Announc ; 13(6): e0003324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38651910

RESUMO

Rivers are critical ecosystems that impact global biogeochemical cycles. Nonetheless, a mechanistic understanding of river microbial metabolisms and their influences on geochemistry is lacking. Here, we announce metaproteomes of river sediments that are paired with metagenomes and metabolites, enabling an understanding of the microbial underpinnings of river respiration.

3.
J Am Acad Dermatol ; 90(1): 91-97, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758026

RESUMO

BACKGROUND: Keratinocyte carcinoma (KC) is the commonest type of malignancy in humans; however, the impact of KC on survival is poorly understood. OBJECTIVES: This study characterizes the impact of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and squamous cell carcinoma in situ (SCCis) on the survival of Icelanders. METHODS: This whole population study evaluated relative survival of KC in Iceland by using a cancer registry containing records of all BCC, SCCis, and SCC cases recorded in Iceland between 1981 and 2015. RESULTS: Between 1981 and 2015, 8767 Icelanders were diagnosed with their first localized KC. A total of 6473 individuals with BCC, 1194 with SCCis, and 1100 with invasive SCC, respectively. BCC was not associated with decreased survival except for men diagnosed with BCC between 1981 and 1995 for whom decreased 10-year relative survival was observed (85.3, 95% CI [77.9-92.7]). SCC and SCCis were both associated with a decrease in relative survival for certain population subgroups such as individuals <50 years of age at time of diagnosis. CONCLUSION: Our whole population cohort survival study examining the Icelandic Cancer Registry supports prior studies demonstrating that BCC is not associated with a reduction in relative survival and that SCC and SCCis are associated with comparatively poor relative survival in certain population subgroups.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Masculino , Humanos , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/patologia , Carcinoma Basocelular/epidemiologia , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Queratinócitos/patologia
4.
PLoS One ; 18(12): e0287943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38153952

RESUMO

Since industrialization began, atmospheric CO2 ([CO2]) has increased from 270 to 415 ppm and is projected to reach 800-1000 ppm this century. Some Arabidopsis thaliana (Arabidopsis) genotypes delayed flowering in elevated [CO2] relative to current [CO2], while others showed no change or accelerations. To predict genotype-specific flowering behaviors, we must understand the mechanisms driving flowering response to rising [CO2]. [CO2] changes alter photosynthesis and carbohydrates in plants. Plants sense carbohydrate levels, and exogenous carbohydrate application influences flowering time and flowering transcript levels. We asked how organismal changes in carbohydrates and transcription correlate with changes in flowering time under elevated [CO2]. We used a genotype (SG) of Arabidopsis that was selected for high fitness at elevated [CO2] (700 ppm). SG delays flowering under elevated [CO2] (700 ppm) relative to current [CO2] (400 ppm). We compared SG to a closely related control genotype (CG) that shows no [CO2]-induced flowering change. We compared metabolomic and transcriptomic profiles in these genotypes at current and elevated [CO2] to assess correlations with flowering in these conditions. While both genotypes altered carbohydrates in response to elevated [CO2], SG had higher levels of sucrose than CG and showed a stronger increase in glucose and fructose in elevated [CO2]. Both genotypes demonstrated transcriptional changes, with CG increasing genes related to fructose 1,6-bisphosphate breakdown, amino acid synthesis, and secondary metabolites; and SG decreasing genes related to starch and sugar metabolism, but increasing genes involved in oligosaccharide production and sugar modifications. Genes associated with flowering regulation within the photoperiod, vernalization, and meristem identity pathways were altered in these genotypes. Elevated [CO2] may alter carbohydrates to influence transcription in both genotypes and delayed flowering in SG. Changes in the oligosaccharide pool may contribute to delayed flowering in SG. This work extends the literature exploring genotypic-specific flowering responses to elevated [CO2].


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Genótipo , Carboidratos , Oligossacarídeos/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/metabolismo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA