Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124214

RESUMO

Smoke-water (SW) and Karrikinolide1 (KAR1) release dormancy and improve seed germination in many plant species. Therefore, we tested SW (1:2500 v/v) and KAR1 (10-7 M) to break the morphological dormancy of celery cultivar (Apium graveolens L.). In the first trial, seeds were subjected to a 21-day incubation period at 20 °C with SW and KAR1 applied as single treatments. KAR1 showed significantly improved germination (30.7%) as compared to SW (17.2%) and a water control (14.7%). In seed soaking experiments, SW, KAR1, and gibberellic acid (GA3) treatments showed higher germination percentages than the water control after 3 and 6 h of soaking. However, prolonged soaking (12 h) reduced germination percentages for all treatments, indicating a detrimental effect. Analysis of KAR1 content dynamics in 7-day- and 21-day-old celery seeds indicated its prolonged effects on germination and dormancy alleviation. Phytohormones, including auxins in 7-day-old and cytokinins in 7-day- and 21-day-old celery seedlings, along with their precursors and metabolites, were analyzed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) after treatment with KAR1 and SW. The analysis of auxin levels in 7-day-old seeds revealed a negative correlation between seed germination and auxin (indole-3-acetic acid, IAA) content. Notably, it was found that KAR1-treated seeds significantly reduced IAA levels in all treatments. SW and KAR1 did not significantly affect cytokinin levels during celery germination except for N6-Isopentenyladenine. Hence, further research is needed to understand their precise role in celery seed germination. This work will improve our understanding of the role of bioactive compounds from plant-derived smoke and how they regulate hormonal responses and improve germination efficiency in celery.

2.
Plant Methods ; 17(1): 37, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794941

RESUMO

BACKGROUND: Karrikins (KARs) are recently described group of plant growth regulators with stimulatory effects on seed germination, seedling growth and crop productivity. So far, an analytical method for the simultaneous targeted profiling of KARs in plant tissues has not been reported. RESULTS: We present a sensitive method for the determination of two highly biologically active karrikins (KAR1 and KAR2) in minute amounts of plant material (< 20 mg fresh weight). The developed protocol combines the optimized extraction and efficient single-step sample purification with ultra-high performance liquid chromatography-tandem mass spectrometry. Newly synthesized deuterium labelled KAR1 was employed as an internal standard for the validation of KAR quantification using a stable isotope dilution method. The application of the matrix-matched calibration series in combination with the internal standard method yields a high level of accuracy and precision in triplicate, on average bias 3.3% and 2.9% RSD, respectively. The applicability of this analytical approach was confirmed by the successful analysis of karrikins in Arabidopsis seedlings grown on media supplemented with different concentrations of KAR1 and KAR2 (0.1, 1.0 and 10.0 µmol/l). CONCLUSIONS: Our results demonstrate the usage of methodology for routine analyses and for monitoring KARs in complex biological matrices. The proposed method will lead to better understanding of the roles of KARs in plant growth and development.

3.
Plant Methods ; 15: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372177

RESUMO

BACKGROUND: Karrikins (KARs) are plant growth regulators that promote seed germination and the subsequent growth and development of seedlings of many plant species. In nature they are generated and released by combustion of plant material and promote the restoration of burned ecosystems. Smoke water can be artificially prepared as a saturated extract of all substances in smoke produced by burning plants, and it has various horticultural and agricultural applications. RESULTS: We have developed, validated and applied the first fast, specific and sensitive method, based on ultra-high performance liquid chromatography-tandem mass spectrometry, for quantifying KARs in smoke water. To assist these efforts and further analyses, standards of the main KARs (which are not commercially available) were synthesized. Due to the complex matrix of smoke waters, two quantification approaches (standard dilution with a structural KAR analogue and standard addition) were compared. The standard addition method allowed absolute quantification of KARs in six of eight smoke water samples of diverse origins and ages. CONCLUSIONS: Our findings reveal differences in both total and relative levels of KARs in smoke water, and indicate that differences in its KAR composition may be linked to variations in its bioactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA