Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 33(16): 1501-13, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26530250

RESUMO

Diffuse axonal injury is recognized as a progressive and long-term consequence of traumatic brain injury. Axonal injury can have sustained negative consequences on neuronal functions such as anterograde and retrograde transport and cellular processes such as autophagy that depend on cytoarchitecture and axon integrity. These changes can lead to somatic atrophy and an inability to repair and promote plasticity. Obstruction of the autophagic process has been noted after brain injury, and rapamycin, a drug used to stimulate autophagy, has demonstrated positive effects in brain injury models. The optimization of drugs to promote beneficial autophagy without negative side effects could be used to attenuate traumatic brain injury and promote improved outcome. Lanthionine ketimine ethyl ester, a bioavailable derivative of a natural sulfur amino acid metabolite, has demonstrated effects on autophagy both in vitro and in vivo. Thirty minutes after a moderate central fluid percussion injury and throughout the survival period, lanthionine ketimine ethyl ester was administered, and mice were subsequently evaluated for learning and memory impairments and biochemical and histological changes over a 5-week period. Lanthionine ketimine ethyl ester, which we have shown previously to modulate autophagy markers and alleviate pathology and slow cognitive decline in the 3 × TgAD mouse model, spared cognition and pathology after central fluid percussion injury through a mechanism involving autophagy modulation.


Assuntos
Aminoácidos Sulfúricos/farmacologia , Autofagia/efeitos dos fármacos , Lesão Axonal Difusa/tratamento farmacológico , Aminoácidos Sulfúricos/administração & dosagem , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
2.
Neuropharmacology ; 97: 67-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26002627

RESUMO

Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1.


Assuntos
Dissuasores de Álcool/farmacologia , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Ceftriaxona/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/metabolismo , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Etanol/administração & dosagem , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Masculino , Microdiálise , Núcleo Accumbens/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA