Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(1): 221-233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555516

RESUMO

INTRODUCTION: Tau and neurodegeneration strongly correlate with cognitive impairment, as compared to amyloid. However, their contribution in explaining cognition and predicting cognitive decline in memory clinics remains unclarified. METHODS: We included 94 participants with Mini-Mental State Examination (MMSE), tau positron emission tomography (PET), amyloid PET, fluorodeoxyglucose (FDG) PET, and MRI scans from Geneva Memory Center. Linear regression and mediation analyses tested the independent and combined association between biomarkers, cognitive performance, and decline. Linear mixed-effects and Cox proportional hazards models assessed biomarkers' prognostic values. RESULTS: Metabolism had the strongest association with cognition (r = 0.712; p < 0.001), followed by tau (r = -0.682; p < 0.001). Neocortical tau showed the strongest association with cognitive decline (r = -0.677; p < 0.001). Metabolism mediated the association between tau and cognition and marginally mediated the one with decline. Tau positivity represented the strongest risk factor for decline (hazard ratio = 32). DISCUSSION: Tau and neurodegeneration synergistically contribute to global cognitive impairment while tau drives decline. The tau PET superior prognostic value supports its implementation in memory clinics. HIGHLIGHTS: Hypometabolism has the strongest association with concurrent cognitive impairment. Neocortical tau pathology is the main determinant of cognitive decline over time. FDG-PET has a superior value compared to MRI as a measure of neurodegeneration. The prognostic value of tau-PET exceeded all other neuroimaging modalities.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/metabolismo , Amiloide/metabolismo , Biomarcadores/metabolismo , Peptídeos beta-Amiloides
2.
J Neurosci Methods ; 383: 109729, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272462

RESUMO

The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.


Assuntos
Meios de Contraste , Doenças do Sistema Nervoso , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Gadolínio , Fagócitos , Doenças do Sistema Nervoso/diagnóstico por imagem
3.
Adv Sci (Weinh) ; 8(17): e2101433, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197055

RESUMO

The purpose of this study is to propose and validate a preclinical in vivo magnetic resonance imaging (MRI) tool to monitor neuroinflammation following ischemic stroke, based on injection of a novel multimodal nanoprobe, NanoGd, specifically designed for internalization by phagocytic cells. First, it is verified that NanoGd is efficiently internalized by microglia in vitro. In vivo MRI coupled with intravenous injection of NanoGd in a permanent middle cerebral artery occlusion mouse model results in hypointense signals in the ischemic lesion. In these mice, longitudinal two-photon intravital microscopy shows NanoGd internalization by activated CX3CR1-GFP/+ cells. Ex vivo analysis, including phase contrast imaging with synchrotron X-ray, histochemistry, and transmission electron microscopy corroborate NanoGd accumulation within the ischemic lesion and uptake by immune phagocytic cells. Taken together, these results confirm the potential of NanoGd-enhanced MRI as an imaging biomarker of neuroinflammation at the subacute stage of ischemic stroke. As far as it is known, this work is the first to decipher the working mechanism of MR signals induced by a nanoparticle passively targeted at phagocytic cells by performing intravital microscopy back-to-back with MRI. Furthermore, using a gadolinium-based rather than an iron-based contrast agent raises future perspectives for the development of molecular imaging with emerging computed tomography technologies.


Assuntos
Gadolínio , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nanotecnologia/métodos , Doenças Neuroinflamatórias/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Camundongos , Microscopia Eletrônica , Doenças Neuroinflamatórias/etiologia
4.
Nanoscale ; 13(6): 3767-3781, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555278

RESUMO

Neuroinflammation is a process common to several brain pathologies. Despites its medical relevance, it still remains poorly understood; there is therefore a need to develop new in vivo preclinical imaging strategies to monitor inflammatory processes longitudinally. We here present the development of a hybrid imaging nanoprobe named NP3, that was specifically designed to get internalized by phagocytic cells and imaged in vivo with MRI and bi-photon microscopy. NP3 is composed of a 16 nm core of gadolinium fluoride (GdF3), coated with bisphosphonate polyethylene glycol (PEG) and functionalized with a Lemke-type fluorophore. It has a hydrodynamic diameter of 28 ± 8 nm and a zeta potential of -42 ± 6 mV. The MR relaxivity ratio at 7 T is r1/r2 = 20; therefore, NP3 is well suited as a T2/T2* contrast agent. In vitro cytotoxicity assessments performed on four human cell lines revealed no toxic effects of NP3. In addition, NP3 is internalized by macrophages in vitro without inducing inflammation or cytotoxicity. In vivo, uptake of NP3 has been observed in the spleen and the liver. NP3 has a prolonged vascular remanence, which is an advantage for macrophage uptake in vivo. The proof-of-concept that NP3 may be used as a contrast agent targeting phagocytic cells is provided in an animal model of ischemic stroke in transgenic CX3CR1-GFP/+ mice using three complementary imaging modalities: MRI, intravital two-photon microscopy and phase contrast imaging with synchrotron X-rays. In summary, NP3 is a promising preclinical tool for the multiscale and multimodal investigation of neuroinflammation.


Assuntos
Meios de Contraste , Gadolínio , Animais , Imageamento por Ressonância Magnética , Imagem Multimodal , Polietilenoglicóis
5.
PLoS One ; 15(8): e0236594, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760073

RESUMO

Microglia, the resident immune cells of the brain, are highly ramified and motile and their morphology is strongly linked to their function. Microglia constantly monitor the brain parenchyma and are crucial for maintaining brain homeostasis and fine-tuning neuronal networks. Besides affecting neurons, anesthetics may have wide-ranging effects mediated by non-neuronal cells and in particular microglia. We thus examined the effect of two commonly used anesthetic agents, ketamine/xylazine and barbiturates, on microglial motility and morphology. A combination of two-photon in vivo imaging and electroencephalography (EEG) recordings in unanesthetized and anesthetized mice as well as automated analysis of ex vivo sections were used to assess morphology and dynamics of microglia. We found that administration of ketamine/xylazine and pentobarbital anesthesia resulted in quite distinct EEG profiles. Both anesthetics reduced microglial motility, but only ketamine/xylazine administration led to reduction of microglial complexity in vivo. The change of cellular dynamics in vivo was associated with a region-dependent reduction of several features of microglial cells ex vivo, such as the complexity index and the ramification length, whereas thiopental altered the size of the cytoplasm. Our results show that anesthetics have considerable effects on neuronal activity and microglial morphodynamics and that barbiturates may be a preferred anesthetic agent for the study of microglial morphology. These findings will undoubtedly raise compelling questions about the functional relevance of anesthetics on microglial cells in neuronal physiology and anesthesia-induced neurotoxicity.


Assuntos
Anestésicos/farmacologia , Moduladores GABAérgicos/farmacologia , Ketamina/farmacologia , Microglia/efeitos dos fármacos , Pentobarbital/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tiopental/farmacologia , Xilazina/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos
6.
Development ; 146(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048318

RESUMO

Myelination leads to the formation of myelin sheaths surrounding neuronal axons and is crucial for function, plasticity and repair of the central nervous system (CNS). It relies on the interaction of the axons and the oligodendrocytes: the glial cells producing CNS myelin. Here, we have investigated the role of a crucial component of the Sonic hedgehog (Shh) signalling pathway, the co-receptor Boc, in developmental and repairing myelination. During development, Boc mutant mice display a transient decrease in oligodendroglial cell density together with delayed myelination. Despite recovery of oligodendroglial cells at later stages, adult mutants still exhibit a lower production of myelin basic protein correlated with a significant decrease in the calibre of callosal axons and a reduced amount of the neurofilament NF-M. During myelin repair, the altered OPC differentiation observed in the mutant is reminiscent of the phenotype observed after blockade of Shh signalling. In addition, Boc mutant microglia/macrophages unexpectedly exhibit the apparent inability to transition from a highly to a faintly ramified morphology in vivo Altogether, these results identify Boc as an important component of myelin formation and repair.


Assuntos
Imunoglobulina G/metabolismo , Bainha de Mielina/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cuprizona/farmacologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Imunoglobulina G/genética , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Receptores de Superfície Celular/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-26834588

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA