Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38623639

RESUMO

AIM: Patients with multiple brain metastases (BM) benefit from hippocampal-avoiding whole brain radiotherapy (HA-WBRT), the challenging and less available form of WBRT. This study explores potential of pre-radiotherapy (pre-RT) hippocampal magnetic resonance spectroscopy (MRS) measuring hippocampal neuronal density as an imaging surrogate and predictive tool for assessing neurocognitive functions (NCF). METHODS: 43 BM patients underwent pre-RT hippocampal MRS. N-acetyl aspartate (NAA) concentration, a marker for neuronal density (weighted by creatine (Cr) and choline (Cho) concentrations), and neurocognitive function (NCF) tests (HVLT and BVMT) performed by certified psychologists were evaluated. Clinical variables and NAA concentrations were correlated with pre-RT NCFs. RESULTS: HVLT and BVMT subtests showed pre-RT deterioration except for BVMT recognition. Significantly better NCFs were observed in women in HVLT subsets. Significantly higher NAA/Cr + Cho was measured in women (median 0.63 vs. 0.55; P=0.048) in the left hippocampus (no difference in the right hippocampus). In men, a positive correlation (0.51, P=0.018) between total brain volume and HVLT-TR, between left hippocampal NAA/Cr + Cho and HVLT-R (0.45, P=0.063), and between right hippocampal NAA/Cr + Cho and BVMT-recognition (0.49, P=0.054) was observed. In women, a borderline significant negative correlation was observed between left hippocampal NAA/Cr + Cho and BVMT-TR (-0.43, P=0.076) and between right NAA/Cr + Cho and HVLT-DR (-0.42, P=0.051). CONCLUSION: Borderline statistically significant correlations were observed with speculative interpretation underlying the challenges of hippocampal MRS as a surrogate for neurocognitive impairment. Further studies need to be done to ascertain the opportunities for imaging predictors of benefit from memory sparing radiotherapy.

2.
J Med Virol ; 96(2): e29409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293790

RESUMO

Persistent infection with high-risk types of human papillomaviruses (HPV) is a major cause of cervical cancer, and an important factor in other malignancies, for example, head and neck cancer. Despite recent progress in screening and vaccination, the incidence and mortality are still relatively high, especially in low-income countries. The mortality and financial burden associated with the treatment could be decreased if a simple, rapid, and inexpensive technology for HPV testing becomes available, targeting individuals for further monitoring with increased risk of developing cancer. Commercial HPV tests available in the market are often relatively expensive, time-consuming, and require sophisticated instrumentation, which limits their more widespread utilization. To address these challenges, novel technologies are being implemented also for HPV diagnostics that include for example, isothermal amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing in decentralized settings. In this review, we first evaluate current commercial HPV tests, followed by a description of advanced technologies, explanation of their principles, critical evaluation of their strengths and weaknesses, and suggestions for their possible implementation into medical diagnostics.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Papillomaviridae/genética , Tecnologia
3.
Anal Chim Acta ; 1288: 342144, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220279

RESUMO

A new hydrophilic interaction liquid chromatography - mass spectrometry method is developed for low-abundant phospholipids and sphingolipids in human plasma and serum. The optimized method involves the Cogent Silica type C hydride column, the simple sample preparation by protein precipitation, and the removal of highly abundant lipid classes using the postcolumn valve directed to waste during two elution windows. The method allows a highly confident and sensitive identification of low-abundant lipid classes in human plasma (246 lipid species from 24 lipid subclasses) based on mass accuracy and retention dependencies in both polarity modes. The method is validated for quantitation using two internal standards (if available) for each lipid class and applied to human plasma and serum samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC), healthy controls, and NIST SRM 1950. Multivariate data analysis followed by various statistical projection methods is used to determine the most dysregulated lipids. Significant downregulation is observed for lysophospholipids with fatty acyl composition 16:0, 18:0, 18:1, and 18:2. Distinct trends are observed for phosphatidylethanolamines (PE) in relation to the bonding type of fatty acyls, where most PE with acyl bonds are upregulated, while ether/plasmenyl PE are downregulated. For the sphingolipid category, sphingolipids with very long N-acyl chains are downregulated, while sphingolipids with shorter N-acyl chains were upregulated in PDAC. These changes are consistently observed for various classes of sphingolipids, ranging from ceramides to glycosphingolipids, indicating a possible metabolic disorder in ceramide biosynthesis caused by PDAC.


Assuntos
Neoplasias Pancreáticas , Esfingolipídeos , Humanos , Esfingolipídeos/análise , Plasma/química , Soro , Ceramidas
4.
J Steroid Biochem Mol Biol ; 233: 106365, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468002

RESUMO

Estrogen receptor alpha (ER) is a key biomarker for breast cancer, and the presence or absence of ER in breast and other hormone-dependent cancers decides treatment regimens and patient prognosis. ER is activated after ligand binding - typically by steroid. 2682 steroid compounds were used in a molecular docking study to identify novel ligands for ER and to predict compounds that may show anticancer activity. The effect of the most promising compounds was determined by a novel luciferase reporter assay. Two compounds, 7 and 12, showing ER inhibitory activity comparable to clinical inhibitors such as tamoxifen or fulvestrant were selected. We propose that the inhibitory effect of compounds 7 and 12 on ER is related to the presence of a double bond in their D-ring, which may protect against ER activation by reducing the electron density of the keto group, or may undergo metabolism leading to an active compound. Western blotting revealed that compound 12 decreased the level of ER in the breast cancer cell line MCF7, which was associated with reduced expression of both isoforms of the progesterone receptor, a well-known downstream target of ER. However, compound 12 has a different mechanism of action from fulvestrant. Furthermore, we found that compound 12 interferes with mitochondrial functions, probably by disrupting the electron transport chain, leading to induction of the intrinsic apoptotic pathway even in ER-negative breast cancer cells. In conclusion, the combination of computational and experimental methods shown here represents a rapid approach to determine the activity of compounds towards ER. Our data will not only contribute to research focused on the regulation of ER activity but may also be useful for the further development of novel steroid receptor-targeted drugs applicable in clinical practice.


Assuntos
Neoplasias da Mama , Estrona , Humanos , Feminino , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Estrona/farmacologia , Receptores de Estrogênio/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Tamoxifeno/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/farmacologia , Estradiol/uso terapêutico
5.
Anal Bioanal Chem ; 415(5): 935-951, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36598539

RESUMO

Direct infusion of lipid extracts into the ion source of a mass spectrometer is a well-established method for lipid analysis. In most cases, nanofluidic devices are used for sample introduction. However, flow injection analysis (FIA) based on sample infusion from a chromatographic pump can offer a simple alternative to shotgun-based approaches. Here, we describe important modification of a method based on FIA and tandem mass spectrometry (MS/MS). We focus on minimizing contamination of the FIA/MS both to render the lipidomic platform more robust and to increase its capacity and applicability for long-sequence measurements required in clinical applications. Robust validation of the developed method confirms its suitability for lipid quantitation in human plasma analysis. Measurements of standard human plasma reference material (NIST SRM 1950) and a set of plasma samples collected from kidney cancer patients and from healthy volunteers yielded highly similar results between FIA-MS/MS and ultra-high-performance supercritical fluid chromatography (UHPSFC)/MS, thereby demonstrating that all modifications have practically no effect on the statistical output. Newly modified FIA-MS/MS allows for the quantitation of 141 lipid species in plasma (11 major lipid classes) within 5.7 min. Finally, we tested the method in a clinical laboratory of the General University Hospital in Prague. In the clinical setting, the method capacity reached 257 samples/day. We also show similar performance of the classification models trained based on the results obtained in clinical settings and the analytical laboratory at the University of Pardubice. Together, these findings demonstrate the high potential of the modified FIA-MS/MS for application in clinical laboratories to measure plasma and serum lipid profiles.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Lipidômica/métodos , Análise de Injeção de Fluxo , Plasma/química , Lipídeos/análise
6.
Sci Rep ; 13(1): 1285, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690660

RESUMO

Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). 2D and 3D assays revealed that COMT overexpression associates with decreased cell invasion (p < 0.0001 for Transwell assay, p < 0.05 for spheroid formation). RNA-Seq and LC-DIA-MS/MS proteomics identified genes associated with invasion (FTO, PIR, TACSTD2, ANXA3, KRT80, S100P, PREX1, CLEC3A, LCP1) being downregulated in MCF7-COMT cells, while genes associated with less aggressive phenotype (RBPMS, ROBO2, SELENBP, EPB41L2) were upregulated both at transcript (|log2FC|> 1, adj. p < 0.05) and protein (|log2FC|> 0.58, q < 0.05) levels. Importantly, proteins driving MET signaling were less abundant in COMT overexpressing cells, and pull-down confirmed interaction between COMT and Kunitz-type protease inhibitor 2 (SPINT2), a negative regulator of MET (log2FC = 5.10, q = 1.04-7). In conclusion, COMT may act as tumor suppressor in ER dependent BC not only by detoxification of catechol estrogens but also by suppressing cell invasion and interplay with MET pathway.


Assuntos
Catecol O-Metiltransferase , Neoplasias , Catecol O-Metiltransferase/genética , Espectrometria de Massas em Tandem , Estrogênios/metabolismo , Catecóis , Receptores de Estrogênio/metabolismo , Estrogênios de Catecol
7.
Anal Bioanal Chem ; 415(6): 1065-1085, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36289102

RESUMO

Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Mutação Puntual , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Predisposição Genética para Doença
8.
Oncogene ; 41(42): 4673-4685, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36068336

RESUMO

Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.


Assuntos
Neoplasias Gastrointestinais , Proteínas Oncogênicas , Animais , Carcinogênese/genética , Neoplasias Gastrointestinais/genética , Inflamação/genética , Camundongos , Mucoproteínas/genética , Proteínas Oncogênicas/genética , Isomerases de Dissulfetos de Proteínas , Microambiente Tumoral
9.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142758

RESUMO

The TGF-ß signaling pathway is involved in numerous cellular processes, and its deregulation may result in cancer development. One of the key processes in tumor progression and metastasis is epithelial to mesenchymal transition (EMT), in which TGF-ß signaling plays important roles. Recently, AGR2 was identified as a crucial component of the cellular machinery responsible for maintaining the epithelial phenotype, thereby interfering with the induction of mesenchymal phenotype cells by TGF-ß effects in cancer. Here, we performed transcriptomic profiling of A549 lung cancer cells with CRISPR-Cas9 mediated AGR2 knockout with and without TGF-ß treatment. We identified significant changes in transcripts associated with focal adhesion and eicosanoid production, in particular arachidonic acid metabolism. Changes in transcripts associated with the focal adhesion pathway were validated by RT-qPCR of COL4A1, COL4A2, FLNA, VAV3, VEGFA, and VINC mRNAs. In addition, immunofluorescence showed the formation of stress fibers and vinculin foci in cells without AGR2 and in response to TGF-ß treatment, with synergistic effects observed. These findings imply that both AGR2 downregulation and TGF-ß have a role in focal adhesion formation and cancer cell migration and invasion. Transcripts associated with arachidonic acid metabolism were downregulated after both AGR2 knockout and TGF-ß treatment and were validated by RT-qPCR of GPX2, PTGS2, and PLA2G4A. Since PGE2 is a product of arachidonic acid metabolism, its lowered concentration in media from AGR2-knockout cells was confirmed by ELISA. Together, our results demonstrate that AGR2 downregulation and TGF-ß have an essential role in focal adhesion formation; moreover, we have identified AGR2 as an important component of the arachidonic acid metabolic pathway.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Ácido Araquidônico , Linhagem Celular Tumoral , Movimento Celular/genética , Ciclo-Oxigenase 2/genética , Transição Epitelial-Mesenquimal/genética , Prostaglandinas E , Fator de Crescimento Transformador beta/genética , Vinculina/genética
10.
Diagnostics (Basel) ; 12(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35885644

RESUMO

A residual cancer burden after neoadjuvant therapy (NAT) for breast cancer (BC) is associated with worse treatment outcomes compared to patients who achieved pathologic complete remission. This single-institutional retrospective study of 767 consecutive patients, including 468 patients with assessable residual cancer burden (aRCB) after NAT, with a median follow-up of 36 months, evaluated the biomarkers assessed before NAT from a biopsy and after NAT from a surgical specimen, their dynamics, and effect on long-term outcomes in specific breast cancer subtypes. The leading focus was on proliferation index Ki-67, which was significantly altered by NAT in all BC subtypes (p < 0.001 for HER2 positive and luminal A/B HER2 negative and p = 0.001 for TNBC). Multivariable analysis showed pre-NAT and post-NAT Ki-67 as independent predictors of survival outcomes for luminal A/B HER2 negative subtype. For TNBC, post-NAT Ki-67 was significant alone, and, for HER2 positive, the only borderline association of pre-NAT Ki-67 was observed in relation to the overall survival. Steroid and HER2 receptors were re-assessed just in a portion of the patients with aRCB. The concordance of both assessments was 92.9% for ER status, 80.1% for PR, and 92.2% for HER2. In conclusion, these real-world data of a consecutive cohort confirmed the importance of biomarkers assessment in patients with aRCB, and the need to consider specific BC subtypes when interpreting their influence on prognosis.

11.
Nat Commun ; 13(1): 124, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013261

RESUMO

Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.


Assuntos
Biomarcadores Tumorais/sangue , Ceramidas/sangue , Metabolismo dos Lipídeos/genética , Lisofosfatidilcolinas/sangue , Neoplasias Pancreáticas/diagnóstico , Esfingomielinas/sangue , Biomarcadores Tumorais/genética , Antígeno CA-19-9/sangue , Estudos de Casos e Controles , Feminino , Humanos , Lipidômica/métodos , Masculino , Análise Multivariada , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Modelos de Riscos Proporcionais , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias Pancreáticas
13.
Mol Cell Proteomics ; 21(2): 100188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929376

RESUMO

Anterior gradient 2 (AGR2) is an endoplasmic reticulum (ER)-resident protein disulfide isomerase (PDI) known to be overexpressed in many human epithelial cancers and is involved in cell migration, cellular transformation, angiogenesis, and metastasis. This protein inhibits the activity of the tumor suppressor p53, and its expression levels can be used to predict cancer patient outcome. However, the precise network of AGR2-interacting partners and clients remains to be fully characterized. Herein, we used label-free quantification and also stable isotope labeling with amino acids in cell culture-based LC-MS/MS analyses to identify proteins interacting with AGR2. Functional annotation confirmed that AGR2 and its interaction partners are associated with processes in the ER that maintain intracellular metabolic homeostasis and participate in the unfolded protein response, including those associated with changes in cellular metabolism, energy, and redox states in response to ER stress. As a proof of concept, the interaction between AGR2 and PDIA3, another ER-resident PDI, was studied in more detail. Pathway analysis revealed that AGR2 and PDIA3 play roles in protein folding in ER, including post-translational modification and in cellular response to stress. We confirmed the AGR2-PDIA3 complex formation in cancer cells, which was enhanced in response to ER stress. Accordingly, molecular docking characterized potential quaternary structure of this complex; however, it remains to be elucidated whether AGR2 rather contributes to PDIA3 maturation in ER, the complex directly acts in cellular signaling, or mediates AGR2 secretion. Our study provides a comprehensive insight into the protein-protein interaction network of AGR2 by identifying functionally relevant proteins and related cellular and biochemical pathways associated with the role of AGR2 in cancer cells.


Assuntos
Mucoproteínas , Neoplasias , Proteínas Oncogênicas , Isomerases de Dissulfetos de Proteínas , Cromatografia Líquida , Humanos , Simulação de Acoplamento Molecular , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Mapas de Interação de Proteínas , Espectrometria de Massas em Tandem
14.
Talanta ; 238(Pt 2): 123064, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801892

RESUMO

Current molecular diagnostics of prostate cancer relies on detection of elevated levels of PSA protein in serum, but its specificity has been questioned due to its higher levels also in non-malignant prostate diseases. A long non-coding RNA biomarker, PCA3, demonstrated excellent specificity for prostate cancer, and thus has become an interesting alternative to PSA monitoring. Its detection utilizes mostly reverse transcription PCR with optical detection, making the protocol longer and more expensive. To avoid PCR, we have developed an electrochemical assay coupled with LAMP, an isothermal amplification technique showing high sensitivities at constant temperatures and shorter reaction times. We amplified PCA3 RNA as well as PSA mRNA (serving as a control), hybridized LAMP products on magnetic beads and measured them with chronoamperometry at carbon electrode chips. We show good sensitivity and specificity for both biomarkers in prostate cancer cell lines, and successful detection of PCA3 in clinical samples, i.e., urine samples from 11 prostate cancer patients and 7 healthy controls, where we obtained excellent correlation with clinical data. This is to our knowledge a first such attempt to apply electrochemistry to determine two RNA biomarkers directly in urine samples of prostate cancer patients in a minimally invasive diagnostics format.


Assuntos
Antígenos de Neoplasias , Neoplasias da Próstata , Antígenos de Neoplasias/genética , Biomarcadores , Biomarcadores Tumorais/genética , Humanos , Masculino , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , RNA , Sensibilidade e Especificidade
15.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944963

RESUMO

The prevention and early diagnostics of precancerous stages are key aspects of contemporary oncology. In cervical cancer, well-organized screening and vaccination programs, especially in developed countries, are responsible for the dramatic decline of invasive cancer incidence and mortality. Cytological screening has a long and successful history, and the ongoing implementation of HPV triage with increased sensitivity can further decrease mortality. On the other hand, endometrial and ovarian cancers are characterized by a poor accessibility to specimen collection, which represents a major complication for early diagnostics. Therefore, despite relatively promising data from evaluating the combined effects of genetic variants, population screening does not exist, and the implementation of new biomarkers is, thus, necessary. The introduction of various circulating biomarkers is of potential interest due to the considerable heterogeneity of cancer, as highlighted in this review, which focuses exclusively on the most common tumors of the genital tract, namely, cervical, endometrial, and ovarian cancers. However, it is clearly shown that these malignancies represent different entities that evolve in different ways, and it is therefore necessary to use different methods for their diagnosis and treatment.

16.
Anal Chim Acta ; 1187: 339145, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753575

RESUMO

Electrochemical (EC) detection of DNA biomarkers represents an interesting tool in molecular oncology due to its sensitivity, simplicity, low cost or rapid times of measurement. However, majority of EC assays, same as most optical-based techniques, require preceding DNA extraction step to remove other cellular components, making these assays more laborious and time-consuming. One option to circumvent this is to use LAMP (loop-mediated amplification), an isothermal amplification technique that can amplify DNA directly in crude lysates in a short time at a constant temperature. Here, we coupled the LAMP reaction with EC readout to detect DNA from the two most common oncogenic human papillomavirus (HPV) types that cause cervical cancer in women, i.e. HPV 16 and HPV 18, directly in crude lysates without a need for DNA extraction step. We show that in crude lysates, the LAMP reaction was superior to PCR, with very good selectivity on a panel of cancer cell lines and with high sensitivity, enabling detection of HPV DNA from as few as 10 cells. As a proof of principle, we applied the assay to nineteen clinical samples both from uninfected women and from women suffering from cervical precancerous lesions caused by HPV 16 or HPV 18 genotypes. Clinical samples were simply boiled for 5 min in homogenization buffer without DNA extraction step, and amplified with LAMP. We obtained excellent concordance of our assay with PCR, reaching 100% sensitivity for both genotypes, 81.82% specificity for HPV 16 and 94.12% specificity for HPV 18. Proposed assay could be a straightforward, simple, rapid and sensitive alternative for early diagnostics of precancerous cervical lesions.


Assuntos
Infecções por Papillomavirus , Bioensaio , Feminino , Papillomavirus Humano 18/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico , Papillomaviridae/genética , Infecções por Papillomavirus/diagnóstico
17.
Cancers (Basel) ; 13(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638284

RESUMO

Long-term dysbiosis of the gut microbiome has a significant impact on colorectal cancer (CRC) progression and explains part of the observed heterogeneity of the disease. Even though the shifts in gut microbiome in the normal-adenoma-carcinoma sequence were described, the landscape of the microbiome within CRC and its associations with clinical variables remain under-explored. We performed 16S rRNA gene sequencing of paired tumour tissue, adjacent visually normal mucosa and stool swabs of 178 patients with stage 0-IV CRC to describe the tumour microbiome and its association with clinical variables. We identified new genera associated either with CRC tumour mucosa or CRC in general. The tumour mucosa was dominated by genera belonging to oral pathogens. Based on the tumour microbiome, we stratified CRC patients into three subtypes, significantly associated with prognostic factors such as tumour grade, sidedness and TNM staging, BRAF mutation and MSI status. We found that the CRC microbiome is strongly correlated with the grade, location and stage, but these associations are dependent on the microbial environment. Our study opens new research avenues in the microbiome CRC biomarker detection of disease progression while identifying its limitations, suggesting the need for combining several sampling sites (e.g., stool and tumour swabs).

18.
Org Biomol Chem ; 19(20): 4497-4506, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33949602

RESUMO

Fully acetylated deoxyfluorinated hexosamine analogues and non-fluorinated 3,4,6-tri-O-acylated N-acetyl-hexosamine hemiacetals have previously been shown to display moderate anti-proliferative activity. We prepared a set of deoxyfluorinated GlcNAc and GalNAc hemiacetals that comprised both features: O-acylation at the non-anomeric positions with an acetyl, propionyl and butanoyl group, and deoxyfluorination at selected positions. Determination of the in vitro cytotoxicity towards the MDA-MB-231 breast cancer and HEK-293 cell lines showed that deoxyfluorination enhanced cytotoxicity in most analogues. Increasing the ester alkyl chain length had a variable effect on the cytotoxicity of fluoro analogues, which contrasted with non-fluorinated hemiacetals where butanoyl derivatives had always higher cytotoxicity than acetates. Reaction with 2-phenylethanethiol indicated that the recently described S-glyco-modification is an unlikely cause of cytotoxicity.


Assuntos
Galactosamina
19.
Bioelectrochemistry ; 140: 107808, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33848875

RESUMO

In this paper we compare electrochemical behavior of two homolog proteins, namely anterior gradient 2 (AGR2) and anterior gradient 3 (AGR3), playing an important role in cancer cell biology. The slight variation in their protein structures has an impact on protein adsorption and orientation at charged surface and also enables AGR2 and AGR3 to form heterocomplexes. We confirm interaction between AGR2 and AGR3 (i) in vitro by immunochemical and constant current chronopotentiometric stripping (CPS) analysis and (ii) in vivo by bioluminescence resonance energy transfer (BRET) assay. Mutation of AGR2 in dimerization domain (E60A) prevents development of wild type AGR2 dimers and also negatively affects interaction with wild type AGR3 as shown by CPS analysis. Beside new information about AGR2 and AGR3 protein including their joint interaction, our work introduces possible applications of CPS in bioanalysis of protein complexes, including those relatively unstable, but important in the cancer research.


Assuntos
Proteínas de Transporte/química , Mucoproteínas/química , Proteínas de Neoplasias/química , Proteínas Oncogênicas/química , Multimerização Proteica , Adsorção , Humanos , Modelos Moleculares , Domínios Proteicos , Estrutura Quaternária de Proteína
20.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921911

RESUMO

DNA methylation, i.e., addition of methyl group to 5'-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.


Assuntos
Técnicas Biossensoriais/métodos , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA