Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone ; 167: 116646, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529445

RESUMO

Mechanical unloading causes rapid loss of bone structure and strength, which gradually recovers after resuming normal loading. However, it is not well established how this adaptation to unloading and reloading changes with age. Clinically, elderly patients are more prone to musculoskeletal injury and longer periods of bedrest, therefore it is important to understand how periods of disuse will affect overall skeletal health of aged subjects. Bone also undergoes an age-related decrease in osteocyte density, which may impair mechanoresponsiveness. In this study, we examined bone adaptation during unloading and subsequent reloading in mice. Specifically, we examined the differences in bone adaptation between young mice (3-month-old), old mice (18-month-old), and transgenic mice that exhibit diminished osteocyte density at a young age (3-month-old BCL-2 transgenic mice). Mice underwent 14 days of hindlimb unloading followed by up to 14 days of reloading. We analyzed trabecular and cortical bone structure in the femur, mechanical properties of the femoral cortical diaphysis, osteocyte density and cell death in cortical bone, and serum levels of inflammatory cytokines. We found that young mice lost ~10% cortical bone volume and 27-42% trabecular bone volume during unloading and early reloading, with modest recovery of metaphyseal trabecular bone and near total recovery of epiphyseal trabecular bone, but no recovery of cortical bone after 14 days of reloading. Old mice lost 12-14% cortical bone volume and 35-50% trabecular bone volume during unloading and early reloading but had diminished recovery of trabecular bone during reloading and no recovery of cortical bone. In BCL-2 transgenic mice, no cortical bone loss was observed during unloading or reloading, but 28-31% trabecular bone loss occurred during unloading and early reloading, with little to no recovery during reloading. No significant differences in circulating inflammatory cytokine levels were observed due to unloading and reloading in any of the experimental groups. These results illustrate important differences in bone adaptation in older and osteocyte deficient mice, suggesting a possible period of vulnerability in skeletal health in older subjects during and following a period of disuse that may affect skeletal health in elderly patients.


Assuntos
Osso e Ossos , Osteócitos , Camundongos , Animais , Osteócitos/metabolismo , Osso Cortical , Fêmur/metabolismo , Elevação dos Membros Posteriores , Camundongos Transgênicos
2.
Cancer Cell ; 40(3): 289-300.e4, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216676

RESUMO

Inhibitors of the programmed cell death-1 (PD-1/PD-L1) signaling axis are approved to treat non-small cell lung cancer (NSCLC) patients, based on their significant overall survival (OS) benefit. Using transcriptomic analysis of 891 NSCLC tumors from patients treated with either the PD-L1 inhibitor atezolizumab or chemotherapy from two large randomized clinical trials, we find a significant B cell association with extended OS with PD-L1 blockade, independent of CD8+ T cell signals. We then derive gene signatures corresponding to the dominant B cell subsets present in NSCLC from single-cell RNA sequencing (RNA-seq) data. Importantly, we find increased plasma cell signatures to be predictive of OS in patients treated with atezolizumab, but not chemotherapy. B and plasma cells are also associated with the presence of tertiary lymphoid structures and organized lymphoid aggregates. Our results suggest an important contribution of B and plasma cells to the efficacy of PD-L1 blockade in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Antígeno B7-H1/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Plasmócitos/patologia
3.
J Bone Miner Res ; 35(11): 2229-2241, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564401

RESUMO

Osteoarthritis (OA) is a debilitating and painful disease characterized by the progressive loss of articular cartilage. Post-traumatic osteoarthritis (PTOA) is an injury-induced type of OA that persists in an asymptomatic phase for years before it becomes diagnosed in ~50% of injured individuals. Although PTOA is not classified as an inflammatory disease, it has been suggested that inflammation could be a major driver of PTOA development. Here we examined whether a state of systemic inflammation induced by lipopolysaccharide (LPS) administration 5-days before injury would modulate PTOA outcomes. RNA-seq analysis at 1-day post-injury followed by micro-computed tomography (µCT) and histology characterization at 6 weeks post-injury revealed that LPS administration causes more severe PTOA phenotypes. These phenotypes included significantly higher loss of cartilage and subchondral bone volume. Gene expression analysis showed that LPS alone induced a large cohort of inflammatory genes previously shown to be elevated in synovial M1 macrophages of rheumatoid arthritis (RA) patients, suggesting that systemic LPS produces synovitis. This synovitis was sufficient to promote PTOA in MRL/MpJ mice, a strain previously shown to be resistant to PTOA. The synovium of LPS-treated injured joints displayed an increase in cellularity, and immunohistological examination confirmed that this increase was in part attributable to an elevation in type 1 macrophages. LPS induced the expression of Tlr7 and Tlr8 in both injured and uninjured joints, genes known to be elevated in RA. We conclude that inflammation before injury is an important risk factor for the development of PTOA and that correlating patient serum endotoxin levels or their state of systemic inflammation with PTOA progression may help develop new, effective treatments to lower the rate of PTOA in injured individuals. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/diagnóstico por imagem , Humanos , Inflamação , Lipopolissacarídeos/toxicidade , Camundongos , Osteoartrite/diagnóstico por imagem , Microtomografia por Raio-X
4.
J Biomech ; 74: 220-224, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29678417

RESUMO

Our previous studies used tibial compression overload to induce anterior cruciate ligament (ACL) rupture in mice, while others have applied similar or greater compressive magnitudes without injury. The causes of these differences in injury threshold are not known. In this study, we compared knee injury thresholds using a "prone configuration" and a "supine configuration" that differed with respect to hip, knee, and ankle flexion, and utilized different fixtures to stabilize the knee. Right limbs of female and male C57BL/6 mice were loaded using the prone configuration, while left limbs were loaded using the supine configuration. Mice underwent progressive loading from 2 to 20 N, or cyclic loading at 9 N or 14 N (n = 9-11/sex/loading method). Progressive loading with the prone configuration resulted in ACL rupture at an average of 10.2 ±â€¯0.9 N for females and 11.4 ±â€¯0.7 N for males. In contrast, progressive loading with the supine configuration resulted in ACL rupture in only 36% of female mice and 50% of male mice. Cyclic loading with the prone configuration resulted in ACL rupture after 15 ±â€¯8 cycles for females and 24 ±â€¯27 cycles for males at 9 N, and always during the first cycle for both sexes at 14 N. In contrast, cyclic loading with the supine configuration was able to complete 1,200 cycles at 9 N without injury for both sexes, and an average of 45 ±â€¯41 cycles for females and 49 ±â€¯25 cycles for males at 14 N before ACL rupture. These results show that tibial compression configurations can strongly affect knee injury thresholds during loading.


Assuntos
Traumatismos do Joelho/fisiopatologia , Tíbia/fisiologia , Animais , Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos , Extremidades/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Estresse Mecânico
5.
J Orthop Res ; 36(2): 699-710, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29058776

RESUMO

Osteophytes are a typical radiographic finding during osteoarthritis (OA), but the mechanisms leading to their formation are not well known. Comparatively, fracture calluses have been studied extensively; therefore, drawing comparisons between osteophytes and fracture calluses may lead to a deeper understanding of osteophyte formation. In this study, we compared the time courses of osteophyte and fracture callus formation, and investigated mechanisms contributing to development of these structure. Additionally, we investigated the effect of mechanical unloading on the formation of both fracture calluses and osteophytes. Mice underwent either transverse femoral fracture or non-invasive anterior cruciate ligament rupture. Fracture callus and osteophyte size and ossification were evaluated after 3, 5, 7, 14, 21, or 28 days. Additional mice were subjected to hindlimb unloading after injury for 3, 7, or 14 days. Protease activity and gene expression profiles after injury were evaluated after 3 or 7 days of normal ambulation or hindlimb unloading using in vivo fluorescence reflectance imaging (FRI) and quantitative PCR. We found that fracture callus and osteophyte growth achieved similar developmental milestones, but fracture calluses formed and ossified at earlier time points. Hindlimb unloading ultimately led to a threefold decrease in chondro/osteophyte area, and a twofold decrease in fracture callus area. Unloading was also associated with decreased inflammation and protease activity in injured limbs detected with FRI, particularly following ACL rupture. qPCR analysis revealed disparate cellular responses in fractured femurs and injured joints, suggesting that fracture calluses and osteophytes may form via different inflammatory, anabolic, and catabolic pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:699-710, 2018.


Assuntos
Calo Ósseo/metabolismo , Consolidação da Fratura , Osteogênese , Osteófito/etiologia , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/patologia , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/patologia , Feminino , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/patologia , Expressão Gênica , Camundongos Endogâmicos C57BL , Osteófito/diagnóstico por imagem , Osteófito/metabolismo , Osteófito/patologia , Peptídeo Hidrolases/metabolismo , Microtomografia por Raio-X
6.
J Orthop Res ; 35(3): 466-473, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27031945

RESUMO

Osteophytes are a typical radiographic finding during osteoarthritis (OA). Osteophytes are thought to form in response to joint instability; however, the time course of osteophyte formation and joint stabilization following joint injury is not well understood. In this study, we investigated the time course of osteophyte formation and joint function following non-invasive knee injury in mice. We hypothesized that initial joint instability following knee injury would initiate osteophyte formation, which would in turn restabilize the joint and reduce range of motion (ROM). Mice were subjected to non-invasive anterior cruciate ligament (ACL) rupture. Anterior-posterior (AP) joint laxity, ROM, and chondro/osteophyte formation were measured immediately after injury, and 2, 4, 6, and 8 weeks post-injury. Chondrophyte areas at each time point were measured with histology, while mineralized osteophyte volume was determined using micro-computed tomography. Immediately after ACL rupture, AP joint laxity was increased twofold, while ROM was increased 11.7%. Chondrophytes appeared by 2 weeks post-injury, corresponding with a decrease in AP joint laxity and ROM. By 8 weeks post-injury, considerable osteophyte formation was observed around the joint, AP joint laxity returned to control levels, and joint ROM decreased to 61% of control values. These data support a role for chondro/osteophytes in joint restabilization after injury, and provide crucial insight into the time course and pathology of joint degeneration during OA development in the mouse. Statement of Clinical Significance: Results from this study increase understanding of conditions leading to osteophyte formation.© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:466-473, 2017.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Osteófito/etiologia , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/patologia , Feminino , Articulações/patologia , Camundongos Endogâmicos C57BL , Osteófito/diagnóstico por imagem , Osteófito/patologia , Amplitude de Movimento Articular , Microtomografia por Raio-X
7.
J Orthop Res ; 34(11): 1941-1949, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26896841

RESUMO

We previously showed that repetitive cyclic loading of the mouse knee joint causes changes that recapitulate the features of osteoarthritis (OA) in humans. By applying a single loading session, we characterized the temporal progression of the structural and compositional changes in subchondral bone and articular cartilage. We applied loading during a single 5-minute session to the left tibia of adult (26-week-old) C57Bl/6 male mice at a peak load of 9.0N for 1,200 cycles. Knee joints were collected at times 0, 1, and 2 weeks after loading. The changes in articular cartilage and subchondral bone were analyzed by histology, immunohistochemistry (caspase-3 and cathepsin K), and microcomputed tomography. At time 0, no change was evident in chondrocyte viability or cartilage or subchondral bone integrity. However, cartilage pathology demonstrated by localized thinning and proteoglycan loss occurred at 1 and 2 weeks after the single session of loading. Transient cancellous bone loss was evident at 1 week, associated with increased osteoclast number. Bone loss was reversed to control levels at 2 weeks. We observed formation of fibrous and cartilaginous tissues at the joint margins at 1 and 2 weeks. Our findings demonstrate that a single session of noninvasive loading leads to the development of OA-like morphological and cellular alterations in articular cartilage and subchondral bone. The loss in subchondral trabecular bone mass and thickness returns to control levels at 2 weeks, whereas the cartilage thinning and proteoglycan loss persist. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1941-1949, 2016.


Assuntos
Osso e Ossos/fisiologia , Cartilagem Articular/fisiologia , Osteoartrite do Joelho/etiologia , Adaptação Fisiológica , Animais , Masculino , Camundongos Endogâmicos C57BL , Osteófito/etiologia , Membrana Sinovial/fisiologia , Suporte de Carga
8.
Arthritis Res Ther ; 17: 30, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25888819

RESUMO

INTRODUCTION: Previous studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury. METHODS: Non-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 µg/kg/dose), high-dose ALN (1,000 µg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (µCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption. RESULTS: µCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points. CONCLUSIONS: High-dose ALN treatment was able to prevent early trabecular bone loss and cartilage degeneration following non-invasive knee injury, but was not able to mitigate long-term joint degeneration. These data contribute to understanding the effect of bisphosphonates on the development of osteoarthritis, and may support the use of anti-resorptive drugs to prevent joint degeneration following injury, although further investigation is warranted.


Assuntos
Alendronato/uso terapêutico , Lesões do Ligamento Cruzado Anterior , Conservadores da Densidade Óssea/uso terapêutico , Traumatismos do Joelho/tratamento farmacológico , Osteoartrite do Joelho/prevenção & controle , Animais , Reabsorção Óssea/prevenção & controle , Doenças das Cartilagens/prevenção & controle , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Feminino , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA