Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(9): 7504-7514, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357814

RESUMO

Currently, self-induced InAlN core-shell nanorods enjoy an advanced stage of accumulation of experimental data from their growth and characterization as well as a comprehensive understanding of their formation mechanism by the ab initio modeling based on Synthetic Growth Concept. However, their electronic and optical properties, on which most of their foreseen applications are expected to depend, have not been investigated comprehensively. GW and the Bethe-Salpeter equation (BSE) are regarded as the state-of-the-art ab initio methodologies to study these properties. However, one of the major drawbacks of these methods is the computational cost, much higher than density-functional theory (DFT). Therefore, in many applications, it is highly desirable to answer the question of how well approaches based on DFT, such as e.g. the local density approximation (LDA), LDA-1/2, the modified Becke-Johnson (mBJ) and the Heyd-Scuseria-Ernzerhof (HSE06) functionals, can be employed to calculate electronic and optical properties with reasonable accuracy. In the present paper, we address this question, investigating how effective the DFT-based methodologies LDA, LDA-1/2, mBJ and HSE06 can be used as approximate tools in studies of the electronic and optical properties of scaled down models of core-shell InAlN nanorods, thus, avoiding GW and BSE calculations.

2.
ACS Nanosci Au ; 3(1): 84-93, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101465

RESUMO

By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core-shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN+, AlN2/AlN2 +, Al2N2/Al2N2 +, and Al2/Al2 + vs InN/InN+, InN2/InN2 +, In2N2/In2N2 +, and In2/In2 +) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core-shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core-shell structure is substantially driven by the precursors' abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs' core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., In x Al1-x N, x ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically <50 nm).

3.
Nanomaterials (Basel) ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202481

RESUMO

The demand for highly sensitive and selective gas sensors has been steadily increasing, driven by applications in various fields such as environmental monitoring, healthcare, and industrial safety. In this context, ternary alloy indium aluminum nitride (InAlN) semiconductors have emerged as a promising material for gas sensing due to their unique properties and tunable material characteristics. This work focuses on the fabrication and characterization of InAlN nanorods grown on sapphire substrates using an ultra-high vacuum magnetron sputter epitaxy with precise control over indium composition and explores their potential for acetone-gas-sensing applications. Various characterization techniques, including XRD, SEM, and TEM, demonstrate the structural and morphological insights of InAlN nanorods, making them suitable for gas-sensing applications. To evaluate the gas-sensing performance of the InAlN nanorods, acetone was chosen as a target analyte due to its relevance in medical diagnostics and industrial processes. The results reveal that the InAlN nanorods exhibit a remarkable sensor response of 2.33% at 600 ppm acetone gas concentration at an operating temperature of 350 °C, with a rapid response time of 18 s. Their high sensor response and rapid response make InAlN a viable candidate for use in medical diagnostics, industrial safety, and environmental monitoring.

4.
Nanoscale Adv ; 4(22): 4886-4894, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381504

RESUMO

Photoconduction (PC) properties were investigated for ternary indium aluminium nitride (In x Al1-x N) nanorods (NRs) with different indium compositions (x) from 0.35 to 0.68, as grown by direct-current reactive magnetron sputter epitaxy. Cross-sectional scanning transmission electron microscopy (STEM) reveals single-crystal quality of the vertically aligned In x Al1-x N NRs. Single-rod photodetector devices with good ohmic contacts were fabricated using the focused-ion-beam technique (FIB), where the In-rich In0.68Al0.32N NR exhibits an optimal photocurrent responsivity of 1400 A W-1 and photoconductive gain of 3300. A transition from a positive photoresponse to a negative photoresponse was observed, while increasing the In composition x from 0.35 to 0.57. The negative PC was further enhanced by increasing x to 0.68. A model based on the coexistence and competition of deep electron trap states and recombination centers was proposed to explain the interesting composition-dependent PC in these ternary III-nitride 1D nanostructures.

5.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364533

RESUMO

We fabricated a gas sensor with a wide-bandgap ZnGa2O4 (ZGO) epilayer grown on a sapphire substrate by metalorganic chemical vapor deposition. The ZGO presented (111), (222) and (333) phases demonstrated by an X-ray diffraction system. The related material characteristics were also measured by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. This ZGO gas sensor was used to detect nitric oxide (NO) in the parts-per-billion range. In this study, the structure effect on the response of the NO gas sensor was studied by altering the sensor dimensions. Two approaches were adopted to prove the dimension effect on the sensing mechanism. In the first approach, the sensing area of the sensors was kept constant while both channel length (L) and width (W) were varied with designed dimensions (L × W) of 60 × 200, 80 × 150, and 120 ×100 µm2. In the second, the dimensions of the sensing area were altered (60, 40, and 20 µm) with W kept constant. The performance of the sensors was studied with varying gas concentrations in the range of 500 ppb~10 ppm. The sensor with dimensions of 20 × 200 µm2 exhibited a high response of 11.647 in 10 ppm, and 1.05 in 10 ppb for NO gas. The sensor with a longer width and shorter channel length exhibited the best response. The sensing mechanism was provided to explain the above phenomena. Furthermore, the reaction between NO and the sensor surface was simulated by O exposure of the ZGO surface in air and calculated by first principles.

6.
Nanomaterials (Basel) ; 8(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642435

RESUMO

GaN nanorods, essentially free from crystal defects and exhibiting very sharp band-edge luminescence, have been grown by reactive direct-current magnetron sputter epitaxy onto Si (111) substrates at a low working pressure of 5 mTorr. Upon diluting the reactive N2 working gas with a small amount of Ar (0.5 mTorr), we observed an increase in the nanorod aspect ratio from 8 to ~35, a decrease in the average diameter from 74 to 35 nm, and a two-fold increase in nanorod density. With further dilution (Ar = 2.5 mTorr), the aspect ratio decreased to 14, while the diameter increased to 60 nm and the nanorod density increased to a maximum of 2.4 × 108 cm-2. Yet, lower N2 partial pressures eventually led to the growth of continuous GaN films. The observed morphological dependence on N2 partial pressure is explained by a change from N-rich to Ga-rich growth conditions, combined with reduced GaN-poisoning of the Ga-target as the N2 gas pressure is reduced. Nanorods grown at 2.5 mTorr N2 partial pressure exhibited a high intensity 4 K photoluminescence neutral donor bound exciton transitions (D°XA) peak at ~3.479 eV with a full-width-at-half-maximum of 1.7 meV. High-resolution transmission electron microscopy corroborated the excellent crystalline quality of the nanorods.

7.
Nanomaterials (Basel) ; 8(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29534542

RESUMO

The influence of structural configurations of indium aluminum nitride (InAlN) nanospirals, grown by reactive magnetron sputter epitaxy, on the transformation of light polarization are investigated in terms of varying structural chirality, growth temperatures, titanium nitride (TiN) seed (buffer) layer thickness, nanospiral thickness, and pitch. The handedness of reflected circularly polarized light in the ultraviolet-visible region corresponding to the chirality of nanospirals is demonstrated. A high degree of circular polarization (Pc) value of 0.75 is obtained from a sample consisting of 1.2 µm InAlN nanospirals grown at 650 °C. A film-like structure is formed at temperatures lower than 450 °C. At growth temperatures higher than 750 °C, less than 0.1 In-content is incorporated into the InAlN nanospirals. Both cases reveal very low Pc. A red shift of wavelength at Pc peak is found with increasing nanospiral pitch in the range of 200-300 nm. The Pc decreases to 0.37 for two-turn nanospirals with total length of 0.7 µm, attributed to insufficient constructive interference. A branch-like structure appears on the surface when the nanospirals are grown longer than 1.2 µm, which yields a low Pc around 0.5, caused by the excessive scattering of incident light.

8.
Sci Rep ; 7(1): 12701, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983102

RESUMO

Selective-area growth (SAG) of single-crystal wurtzite GaN nanorods (NRs) directly onto Si(001) substrates with un-etched native SiOx amorphous layer, assisted by a patterning TiNx mask fabricated by nanosphere lithography (NSL), has been realized by reactive magnetron sputter epitaxy (MSE). The GaN NRs were grown vertically to the substrate surface with the growth direction along c-axis in the well-defined nano-opening areas. A 5-step structural and morphological evolution of the SAG NRs observed at different sputtering times depicts a comprehensive growth model, listed in sequence as: formation of a polycrystalline wetting layer, predominating c-axis oriented nucleation, coarsening and coalescence of multi-islands, single NR evolution, and finally quasi-equilibrium crystal shape formation. Room-temperature cathodoluminescence spectroscopy shows a strong GaN bandedge emission with a uniform luminescence across the NRs, indicating that the SAG NRs are grown with high quality and purity. In addition, single-longitudinal-mode lasing, attributed to well-faceted NR geometry forming a Fabry-Pérot cavity, was achieved by optical pumping, paving a way for fabricating high-performance laser optoelectronics using MSE.

9.
Sci Rep ; 7(1): 1170, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446745

RESUMO

Novel hybrid organic-inorganic nanostructures fabricated to utilize non-radiative resonant energy transfer mechanism are considered to be extremely attractive for a variety of light emitters for down converting of ultaviolet light and for photovoltaic applications since they can be much more efficient compared to devices grown with common design. Organic-inorganic hybrid structures based on green polyfluorene (F8BT) and GaN (0001) nanorods grown by magnetron sputtering on Si (111) substrates are studied. In such nanorods, stacking faults can form periodic polymorphic quantum wells characterized by bright luminescence. In difference to GaN exciton emission, the recombination rate for the stacking fault related emission increases in the presence of polyfluorene film, which can be understood in terms of Förster interaction mechanism. From comparison of dynamic properties of the stacking fault related luminescence in the hybrid structures and in the bare GaN nanorods, the pumping efficiency of non-radiative resonant energy transfer in hybrids was estimated to be as high as 35% at low temperatures.

10.
Nanotechnology ; 26(21): 215602, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25944838

RESUMO

Catalystless growth of InxAl(1-x)N core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl(1-x)N nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl(1-x)N film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl(1-x)N is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl(1-x)N[0001]//Si[111] and InxAl(1-x)N[1120]//Si[110 by removing the native SiOx layer from the substrate.

11.
Nano Lett ; 15(1): 294-300, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25427233

RESUMO

Chirality, tailored by external morphology and internal composition, has been realized by controlled curved-lattice epitaxial growth of In(x)Al(1-x)N nanospirals. The curved morphology of the spiral segments is a result of a lateral compositional gradient while maintaining a preferred crystallographic growth direction, implying a lateral gradient in optical properties. Individual nanospirals show an asymmetric core-shell structure with curved basal planes. Mueller matrix spectroscopic ellipsometry shows that the tailored chirality is manifested in the polarization state of light reflected off the nanospirals.


Assuntos
Compostos de Alumínio/química , Cristalização , Índio/química , Nanopartículas/química
12.
J Nanosci Nanotechnol ; 10(8): 5170-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125866

RESUMO

We report the hardness of wurtzite InN thin film grown with different crystalline orientations of heteroepitaxial s-plane (1101) and a-plane (1120) on r-plane (1102) Al2O3, and homoepitaxial film on c-plane (0001) Al2O3. Hardness values along with elastic properties are studied using nanoindentation technique. Maximum hardness is reported for c-plane (approximately 8 GPa), which is followed by s-plane (approximately 5.5 GPa) and then a-plane (approximately 4 GPa) oriented InN Films. Peierls force in the slip system of different crystalline orientations for wurtzite sample is calculated for explaining the systematic variations in hardness values of these films grown with different crystalline orientations.

13.
Phys Rev Lett ; 103(26): 264301, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366314

RESUMO

We report a direct determination of the specular scattering probability of acoustic phonons at a crystal boundary by observing the escape of incident coherent phonons from the coherent state during reflection. In the sub-THz frequency range where the phonon wavelength is much longer than the lattice constant, the acoustic phonon-interface interaction is found to agree well with the macroscopic theory on wave scattering from rough surfaces. This examination thus quantitatively verifies the dominant role of atomic-scale corrugations in the Kapitza anomaly observed at 1-10 K and further opens a new path to nondestructively estimate subnanoscale roughness of buried interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA