Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 17(1): 116, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192796

RESUMO

BACKGROUND: As a first-line chemotherapeutic agent, 5-fluorouracil (5-FU) exhibits many side effects, weakening its efficacy in cancer treatment. In this study, we hypothesize that Poria cocos polysaccharides (PCP), a traditional Chinese herbal medicine with various bioactivities and prebiotic effects, might improve the therapeutic effect of 5-FU by restoring the homeostasis of the gut microenvironment and the commensal gut microflora. METHODS: ApcMin/+ mice were employed to evaluate the anti-cancer effect of 5-FU in conjunction with PCP treatment. Body weight and food consumption were monitored weekly. Polyp count was used to assess the anti-cancer effect of PCP and 5-FU. Expressions of mucosal cytokines and gut epithelial junction molecules were measured using qRT-PCR. 16S rRNA gene sequencing of fecal DNAs was used to evaluate the compositional changes of gut microbiota (GM). Transplantation of Lactobacillus johnsonii and Bifidobacterium animalis were performed to verify the prebiotic effects of PCP in improving the efficacy of 5-FU. RESULTS: The results showed that PCP treatment alleviated the weight loss caused by 5-FU treatment and reduced the polyp burden in ApcMin/+ mice. Additionally, PCP treatment eased the cytotoxic effects of 5-FU by reducing the expressions of pro-inflammatory cytokines, increasing the anti-inflammatory cytokines; and significantly improving the gut barriers by enhancing the tight junction proteins and associated adhesion molecules. Furthermore, 16S rRNA gene sequencing data showed that PCP alone or with 5-FU could stimulate the growth of probiotic bacteria (Bacteroides acidifaciens, Bacteroides intestinihominis, Butyricicoccus pullicaecorum, and the genera Lactobacillus, Bifidobacterium, Eubacterium). At the same time, it inhibited the growth of potential pathogens (e.g., Alistipes finegoldii, Alistipes massiliensis, Alistipes putredinis., Citrobacter spp., Desulfovibrio spp., and Desulfovibrio desulfuricans). Moreover, the results showed that transplantation of L.johnsonii and B.animalis effectively reduced the polyp burden in ApcMin/+ mice being treated with 5-FU. CONCLUSION: Our study showed that PCP could effectively improve the anti-cancer effect of 5-FU by attenuating its side effects, modulating intestinal inflammation, improving the gut epithelial barrier, and modulating the gut microbiota of ApcMin/+ mice.

2.
Front Nutr ; 9: 977556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003835

RESUMO

Hyaluronan (HA) is a mucopolysaccharide that naturally exists in all living organisms as the main component of the extracellular matrix. Over the last 30 years, HA has been used as the main ingredient in cosmetic products, eye drops, and medicinal products. It is also taken orally as a health supplement. However, the physiological effect of the ingested HA is not clear. In the current study, the interaction between HA and gut microbiota, and the potential prebiotic effects were investigated. HA was used to treat the C57BL/6 mice for 15 consecutive days, then fecal genomic DNA was extracted from fecal samples for 16S rRNA amplicon sequencing. The results showed that HA could significantly change the composition of gut microbiota (GM), e.g., increased the relative abundance of beneficial bacteria, including short-chain fatty acids (SCFAs)-producing bacteria and xylan/cellulose-degrading bacteria, whereas decreased the relative abundance of potential pathogens including sulfate-reducing bacteria (SRB), inflammation and cancer-related bacteria. The rotarod test was used to evaluate the anti-fatigue effects of HA in C57BL/6 mice. The results showed that HA could lengthen the mice's retention time on the accelerating rotarod. HA increased the concentration of glycogen and superoxide dismutase (SOD) in mice's muscle and liver, whereas decreased the serum concentration of malondialdehyde (MDA). Moreover, the metabolic products of Desulfovibrio vulgaris (MPDV), the model SRB bacteria, showed cytotoxic effects on H9c2 cardiomyocytes in a dosage-dependent manner. MPDV also caused mitochondrial damage by inducing mitochondrial fragmentation, depolarization, and powerless ATP production. Taken together, we show that HA possesses significant prebiotic and anti-fatigue effects in C57BL/6 mice.

3.
J Adv Res ; 38: 107-118, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35572409

RESUMO

Introduction: Far-infrared radiation (FIR) is widely used in the treatment of various diseases such as insomnia and cardiovascular risk. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which the therapeutic potential of FIR in RA is unclear. Objectives: To determine the therapeutic potential and mechanistic actions of FIR in treatment of RA. Methods: Adjuvant-induced arthritis (AIA) rat models were established to assess the therapeutic potency of FIR in RA treatment. The scoring parameters such as arthritis score, swelling of the hind paw, spleen and thymus indices, micro-CT analysis indices were adopted to estimate the beneficial effects of FIR during RA treatment in AIA model. PCR gene expression arrays were used to analyze inflammatory and autoimmune genes expression profiles in rat synovium. The inflammatory and immunity genes profiling was further analyzed through transcription factor prediction using PROMO. A signaling network map of possible molecular circuits connecting the identified differential genes to the RA's pathogenesis was constructed based on extensive literature reviews, and the major signaling pathways were validated by Western blotting. Results: Thirty minutes of FIR treatment significantly improved the symptoms of AIA in rats. Gene expression profiling indicated that 27 out of 370 genes were down-regulated by FIR. AP-1, CEBPα, CEBPß, c-Fos, GR, HNF-3ß, USF-1, and USF-2 were predicted as key transcription factors that regulated the identified differential genes. In addition, MAPK, PI3K-Akt, and NF-κB signaling are the major molecular pathways down-regulated by FIR treatment. Conclusion: FIR may provide beneficial effects on the AIA rat model of arthritis by suppression of the MAPK, PI3K-Akt and NF-κB signaling pathways. Therefore, we believe that FIR may provide an alternative non-pharmacological and non-surgical therapeutic approach for the treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/radioterapia , Autoimunidade , Regulação para Baixo , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
4.
Eur J Pharmacol ; 918: 174773, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065044

RESUMO

Emerging evidence points to a strong association between the bile acid (BA)-gut microbiota (GM) axis, and the risk of colorectal cancer (CRC). Kaempferol, a common polyphenol in the daily diet, shows various pharmacological activities. However, it remains unclear about the effect of kaempferol on the CRC development and the BA-GM homeostasis. Here, we found kaempferol effectively reduced tumor burden, restored the damaged intestinal barrier and downregulated antigen Ki67 and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) expressions in ApcMin/+ mice. For BA metabolism, kaempferol reversed the decreasing trend in chenodesoxycholic acid (CDCA) and 12α-hydroxylated BAs by increasing the sterol 27-hydroxylase (CYP27A1) and sterol 12α-hydroxylase (CYP8B1) expressions, and upregulated FXR expression. Importantly, molecular docking analysis revealed a direct interaction between kaempferol and farnesoid X receptor (FXR), the mater regulator of BA signaling. For GM analysis, we found higher abundances of species with anticancer properties and lower abundances of species associated with inflammation, obesity, and metabolic disorders in kaempferol-treated groups. Moreover, the gut of kaempferol-treated mice was predominantly colonized by short-chain fatty acid (SCFA) and lactic acid producing bacteria. Based on the PICRUSt-predicted pathways of our GM dataset, we demonstrated that kaempferol downregulated secondary BA synthesis pathways, increased G protein-coupled receptor activity and decreased NOD-like receptor activity, affecting cell differentiation, proliferation, survival, and apoptosis. Collectively, these results reveal that kaempferol effectively attenuates the tumor burden in ApcMin/+ mice by modulating the BA signaling and GM homeostasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Neoplasias Colorretais , Microbioma Gastrointestinal , Quempferóis/farmacologia , Antígeno Ki-67/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos
5.
Eur J Pharmacol ; 908: 174399, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34331954

RESUMO

Vorinostat is a histone deacetylase inhibitor (HDACi) that was demonstrated in our previous study to inhibit the proliferation, migration, and invasion of cervical cancer cells by regulating the PI3K/Akt signaling pathway. However, the molecular mechanism of vorinostat in cervical cancer treatment remains to be further elucidated. A nude mouse xenograft model was established to analyze the antitumor effect of vorinostat in vivo. The combination of iTRAQ-based proteomics and parallel reaction monitoring (PRM) technology has proven to be an efficient and reliable method to identify potential targets for cancer chemotherapy. In this study, 254 differentially expressed proteins in vorinostat-treated cervical cancer cells, among which 180 were upregulated and 74 were downregulated, were identified by using an iTRAQ-based proteomic strategy. Subsequent bioinformatic and PRM analysis of these differentially expressed proteins indicated that UBE2C is a promising target of vorinostat in the inhibition of cervical cancer cell proliferation. We confirmed that the expression of endogenous UBE2C in cervical cancer cell lines was significantly higher than that in normal cervical epithelial cell lines. Additionally, we found that vorinostat downregulated the expression of UBE2C, SQSTM1/p62, N-cadherin, vimentin and upregulated E-cadherin in SiHa and HeLa cells. Our results also showed that vorinostat can downregulate the expression of SQSTM1/p62, N-cadherin, and vimentin during the treatment of cervical cancer cells by regulating UBE2C, while upregulating the expression of E-cadherin. In conclusion, vorinostat reverses epithelial-mesenchymal transition by targeting UBE2C and controls the proliferation of cervical cancer cells through the ubiquitination pathway. UBE2C can be used as a promising target for the development of vorinostat treatment strategies.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias do Colo do Útero , Animais , Feminino , Células HeLa , Humanos , Camundongos , Fosfatidilinositol 3-Quinases , Vorinostat
6.
Pharmacol Res ; 170: 105697, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062240

RESUMO

With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Complemento C3/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polygala , Saponinas/farmacologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Longevidade/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Polygala/química , Saponinas/isolamento & purificação , Memória Espacial/efeitos dos fármacos , Transcriptoma
7.
Pharmacol Res ; 168: 105587, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798737

RESUMO

We previously reported the neuroprotective effects of icariin in rat cortical neurons. Here, we present a study on icariin's anti-aging effect in 24-month aged mice by treating them with a single daily dose of 100 mg/kg of icariin for 15 consecutive days. Icariin treatment improved motor coordination and learning skills while lowered oxidative stress biomarkers in the serum, brain, kidney, and liver of the aged mice. In addition, icariin improved the intestinal integrity of the aged mice by upregulating tight junction adhesion molecules and the Paneth and goblet cells, along with the reduction of iNOS and pro-inflammatory cytokines (IL-1ß, TNF-α, IL-2 and IL-6, and IL-12). Icariin treatments also significantly upregulated aging-related signaling molecules, Sirt 1, 3 & 6, Pot1α, BUB1b, FOXO1, Ep300, ANXA3, Calb1, SNAP25, and BDNF in old mice. Through gut microbiota (GM) analysis, we observed icariin-associated improvements in GM composition of aged mice by reinstating bacteria found in the young mice, while suppressing some bacteria found in the untreated old mice. To clarify whether icariin's anti-aging effect is rooted in the GM, we performed fecal microbiota transfer (FMT) from icariin-treated old mice to the old mice. FMT-recipients exhibited similar improvements in the rotarod score and age-related biomarkers as observed in the icariin-treated old mice. Equal or better improvement on the youth-like features was noticed when aged mice were FMT with feces from young mice. Our study shows that both direct treatments with icariin and fecal transplant from the icariin-treated aged mice produce similar anti-aging phenotypes in the aged mice. We prove that GM plays a pivotal role in the healing abilities of icariin. Icariin has the potentials to be developed as a medicine for the wellness of the aged adults.


Assuntos
Envelhecimento/efeitos dos fármacos , Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Células Caliciformes/efeitos dos fármacos , Intestinos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/efeitos dos fármacos
9.
J Adv Res ; 22: 145-152, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31969995

RESUMO

Far infrared radiation (FIR) has been widely used to treat chronic diseases and symptoms; however, the underlying mechanism remains unclear. As gut microbiota (GM) markedly impact the host's physiology, making GM a potential target for the therapeutic evaluation of FIR. C57BL/6J mice were exposed to five times of 2 min-FIR exposure on the abdomen, with a two-hour interval of each exposure within one day. Fecal samples were collected on day one and day 25 after the FIR/control treatment, and the extracted fecal DNAs were evaluated using ERIC-PCR and 16S amplicon sequencing. Host's G-protein coupled receptors (GPCR) were analyzed using qRT-PCR. FIR induced immediate changes in the GM composition. A prompt and significant (p < 0.05) reduction in the abundance of phylum Deferribacteres (comprised of several pathogens) was observed in the FIR-irradiated mice compared to the control group. Contrarily, FIR exposure induced beneficial genera such as Alistipes, Barnesiella, and Prevotella. The gut of FIR-irradiated mice was predominated by short-chain fatty acids (SCFAs) producers. Also, FIR stimulated the expression of SCFAs-sensing receptors, GPCR 41, 43, and 109 in the gut epithelial barrier. These findings provide the first-hand evidence in which the beneficial effects of FIR radiation might be partially through the modulation of GM.

10.
Phytomedicine ; 67: 153157, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31896054

RESUMO

BACKGROUND: Inulin-type fructo-oligosaccharides (FOSs) purified from Morinda officinalis How., an effective oral antidepressant for mild to moderate depression, have a largely unknown efficacy and poor bioavailability. PURPOSE: Therefore, the microbiota-gut-brain axis was used to investigate the antidepressive properties of FOSs at the interface of the gut microbiota (GM). STUDY DESIGN AND METHODS: FOSs was introduced via intragastric gavage to rats exposed to chronic unpredictable mild stress (CUMS), and the antidepressive effects were investigated through behavioral tests, intestinal morphology and corticosterone levels. Bacterial genomic DNA was extracted from feces, and the GM was profiled for using enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis, partial least squares-discriminant analysis (PLS-DA) and 16S rRNA gene pyrosequencing. RESULTS: It was observed that FOSs alleviated depression-like behaviors and repaired intestinal epithelia damages. FOSs treatment lowered corticosterone levels in the plasma and urine of the model rats. Moreover, the GM compositions of normal and model rats were distantly clustered and were mainly related to the disappearance of beneficial bacteria (e.g., Acinetobacter, Barnesiella, Coprococcus, Dialister, Lactobacillus, and Paenibacillus) and appearance of depression-associated bacteria (e.g., Anaerostipes, Oscillibacter, Proteobacteria, and Streptococcus) in depressive rats. Interestingly, the dysbiosis in depressive rats' gut was reinstated with FOSs treatments. Notably, FOSs promoted the abundance of the bacterial phylum Cyanobacteria, a group of bacteria known for the secretion of pharmacologically important metabolites, such as H2S, that exhibit antidepressant-like properties. Apparently, FOSs-induced modulation of GM was more antidepressive compared to a component of FOSs, degrees of polymerization (DP) 5, and fluoxetine, the standard antidepressant drug. CONCLUSION: In conclusion, this study implied that antidepressant efficacy of FOSs was inseparable from and strongly associated with the modulation of the host' s GM.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Morinda/química , Oligossacarídeos/farmacologia , Animais , Corticosterona/sangue , Corticosterona/urina , Depressão/etiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , RNA Ribossômico 16S , Ratos Sprague-Dawley , Estresse Psicológico/tratamento farmacológico
11.
Front Pharmacol ; 10: 1229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680986

RESUMO

Pogostemon cablin (Blanco) Benth (PC) is a Chinese medicinal plant traditionally used for the treatment of gastrointestinal symptoms. To investigate the prebiotic effect of patchouli essential oil (PEO) and its derived compounds through the modulation of gut microbiota (GM). C57BL/6J mice were treated with the PEO and three active components of PEO, i.e. patchouli alcohol (PA), pogostone (PO) and ß-patchoulene (ß-PAE) for 15 consecutive days. Fecal samples and mucosa were collected for GM biomarkers studies. PEO, PA, PO, and ß-PAE improve the gut epithelial barrier by altering the status of E-cadherin vs. N-cadherin expressions, and increasing the mucosal p-lysozyme and Muc 2. Moreover, the treatments also facilitate the polarization of M1 to M2 macrophage phenotypes, meanwhile, suppress the pro-inflammatory cytokines. Fecal microbial DNAs were analyzed and evaluated for GM composition by ERIC-PCR and 16S rRNA amplicon sequencing. The GM diversity was increased with the treated groups compared to the control. Further analysis showed that some known short chain fatty acids (SCFAs)-producing bacteria, e.g. Anaerostipes butyraticus, Butytivibrio fibrisolvens, Clostridium jejuense, Eubacterium uniforme, and Lactobacillus lactis were significantly enriched in the treated groups. In addition, the key SCFAs receptors, GPR 41, 43 and 109a, were significantly stimulated in the gut epithelial layer of the treated mice. By contract, the relative abundance of pathogens Sutterlla spp., Fusobacterium mortiferum, and Helicobacter spp. were distinctly reduced by the treatments with PEO and ß-PAE. Our findings provide insightful information that the microbiota/host dynamic interaction may play a key role for the pharmacological activities of PEO, PA, PO, and ß-PAE.

12.
Pharmacol Res ; 148: 104448, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31499195

RESUMO

The incidence of colorectal cancer (CRC) is alarming among younger peoples. While no effective chemopreventive drug available in the market, researchers have been searching for alternative strategies against CRC that are in demand. Therefore, we tested the cancer-preventive properties of Ganoderma lucidum (Lingzhi) polysaccharides (GLP), along with the saponins extracted from Gynostemma pentaphyllum (GpS), an herbal tea with prebiotic-like effects. Here, we report that saponins from Gynostemma pentaphyllum (GpS) and polysaccharides from Ganoderma lucidum (GLP together with GpS) profoundly improved the inflamed gut barrier of ApcMin/+ mice by reducing polyps, shifting colonic M1 to M2 macrophages, positively reverting E-cadherin/N-cadherin ratio, and downregulating oncogenic signaling molecules. The treatments also markedly promoted short-chain fatty acids (SCFAs)-producing bacteria and abridged sulfate-reducing bacteria in a time-dependent manner. G-protein coupled-receptors were significantly stimulated in the treated mice, accompanied by the modulated expressions of histone deacetylases, anti-cancer gut hormone PYY, and PPAPγ. These findings suggest that some of the herbal medicinal foods could modulate the relationship between the host and the gut microbiota (GM) to exert their beneficial properties to the host. Our study also implicates that these dietary mushroom polysaccharides and the Gp saponins have the potential to be developed as new preventive medicines against CRC.


Assuntos
Agaricales/química , Neoplasias Colorretais/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Gynostemma/química , Polissacarídeos/farmacologia , Saponinas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Bactérias/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Camundongos , Prebióticos/administração & dosagem , RNA Ribossômico 16S/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Phytomedicine ; 60: 153008, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31288940

RESUMO

BACKGROUND: Melanogenesis is a physiological process of melanin production in response to UV exposure, which is modulated through multi-signaling pathways including cAMP/PKA, Wnt/ß-catenin and MAPK signaling cascades. HYPOTHESIS/PURPOSE: The present study aims to investigate the molecular mechanism of hyperpigmentation induced by Gynostemma pentaphyllum saponins. STUDY DESIGN/METHODS: In this study, we investigated the melanogenic effects of triterpenoid saponins of Gynostemma pentaphyllum (GpS), a medicinal plant. Two mouse melanogenic cell lines B16 and B16F10 were employed for the current study. RESULTS: The results showed that non-toxic doses of GpS markedly increased melanin formation in both B16 and B16F10 cells. Western blot analysis showed that GpS treatment significantly up-regulated the expression levels of the key melanogenic proteins, including tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), TRP-1 and TRP-2 in a dose-dependent manner. The phospho-CREB, which is the downstream target of PKA is also elevated upon GpS treatment. We further observed that H89, a PKA inhibitor, attenuated the GpS induced tyrosinase activity, melanin content, the expression of phospho-CREB. In addition to the cAMP/PKA signaling pathway, GpS treatment also up-regulated the ß-catenin of the Wnt signaling pathway which is involved in the transcriptional activation of MITF in melanogensis. We further demonstrated that treatment with GpS markedly enhance mRNA expression of MITF, along with the downstream target molecules, TYR, TRP-1 and TRP-2. Knock-down MITF with siMITF inhibited the expression of MITF mRNA by 63%, and the melanin content was reduced 70% in the siMITF-transfected cells compared to untransfected or scramble siRNA control cells. CONCLUSION: These findings demonstrated strong melanogenic activities of GpS, and the MITF is essential for the melanogenesis stimulated by GpS.


Assuntos
Gynostemma/química , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Saponinas/farmacologia , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Oxirredutases Intramoleculares/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Regulação para Cima
14.
Anal Chem ; 90(19): 11210-11215, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30193063

RESUMO

Carboxyl-containing metabolites (CCMs) widely exist in living systems and are the essential components for life. Global characteristics of CCMs in biological samples are critical for the understanding of physiological processes and the discovery for the onset of relevant diseases. However, their determination represents a challenge due to enormous polarity differences, structural diversity, high structural similarity, and poor ionization efficiency in mass spectrometry. Herein, 5-(diisopropylamino)amylamine (DIAAA) derivatization coupled with liquid chromatography-mass spectrometry (LC-MS) was developed for mapping the CCMs. With this methodology, the sensitivity was significantly enhanced. More importantly, the hydrophobicity of polar CCMs, amino acids, TCA cycle intermediates, and short-chain fatty acids and the hydrophilicity of low-polar CCMs, long-chain fatty acids, and bile acids were significantly increased, resulting in a remarkable separation efficiency for which 68 CCMs can be simultaneously determined. Furthermore, the polarity-tuning effect was confirmed to be induced by the different impacts of aliphatic chains and nitrogen atom in DIAAA, the latter existing as a cation in the acidic mobile phase, using different derivatization reagents. Finally, this derivatization method was utilized to hunt for the potential biomarkers in colorectal cancer (CRC) patients and 52 CCMs, related with several key metabolic pathways, including amino acids metabolism, TCA cycle, fatty acid metabolism, pyruvate metabolism, and gut flora metabolism were identified. This innovative polarity-tuning derivatization-LC-MS approach was proved to be a valuable tool for probing global metabolome with high separation efficiency and sensitivity in various biological samples.


Assuntos
Neoplasias Colorretais/metabolismo , Metabolômica/métodos , Aminas/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas
15.
Sci Rep ; 7(1): 12552, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970547

RESUMO

Studies showed that manipulation of gut microbiota (GM) composition through the treatment of prebiotics could be a novel preventive measure against colorectal cancer (CRC) development. In this study, for the first time, we assessed the non-toxic doses of the triterpene saponins (ginsenoside-Rb3 and ginsenoside-Rd) - as prebiotics - that effectively reinstated the dysbiotic-gut microbial composition and intestinal microenvironment in an ApcMin/+ mice model. Rb3 and Rd effectively reduced the size and the number of the polyps that accompanied with the downregulation of oncogenic signaling molecules (iNOS, STAT3/pSTAT3, Src/pSrc). Both the compounds improved the gut epithelium by promoting goblet and Paneth cells population and reinstating the E-cadherin and N-Cadherin expression. Mucosal immunity remodeled with increased in anti-inflammatory cytokines and reduced in pro-inflammatory cytokines in treated mice. All these changes were correlating with the promoted growth of beneficial bacteria such as Bifidobacterium spp., Lactobacillus spp., Bacteroides acidifaciens, and Bacteroides xylanisolvens. Whereas, the abundance of cancer cachexia associated bacteria, such as Dysgonomonas spp. and Helicobacter spp., was profoundly lower in Rb3/Rd-treated mice. In conclusion, ginsenosides Rb3 and Rd exerted anti-cancer effects by holistically reinstating mucosal architecture, improving mucosal immunity, promoting beneficial bacteria, and down-regulating cancer-cachexia associated bacteria.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Ginsenosídeos/administração & dosagem , Pólipos/tratamento farmacológico , Prebióticos/administração & dosagem , Animais , Bacteroides/efeitos dos fármacos , Bacteroides/crescimento & desenvolvimento , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Caderinas/genética , Microambiente Celular/efeitos dos fármacos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Pólipos/patologia , Fator de Transcrição STAT3/genética , Saponinas/administração & dosagem , Triterpenos/administração & dosagem , Quinases da Família src/genética
16.
Molecules ; 21(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879670

RESUMO

Icariin, an ingredient in the medicinal herb Epimedium brevicornum Maxim (EbM), has been considered as a potential therapeutic agent for neurodegenerative diseases such as Alzheimer's disease (AD). Hyperhomocysteinaemia is a risk factor for AD and other associated neurological diseases. In this study we aim to investigate whether icariin can reverse homocysteine (Hcy)-induced neurotoxicity in primary embryonic cultures of rat cortical neurons. Our findings demonstrated that icariin might be able restore the cytoskeleton network damaged by Hcy through the modulation of acetyl-α-tubulin, tyrosinated-α-tubulin, and phosphorylation of the tubulin-binding protein Tau. In addition, icariin downregulated p-extracellular signal-regulated kinase (ERK) which is a kinase targeting tau protein. Furthermore, icariin effectively restored the neuroprotective protein p-Akt that was downregulated by Hcy. We also applied RT² Profiler PCR Arrays focused on genes related to AD and neurotoxicity to examine genes differentially altered by Hcy or icariin. Among the altered genes from the arrays, ADAM9 was downregulated 15 folds in cells treated with Hcy, but markedly restored by icariin. ADAM family, encoded α-secreatase, plays a protective role in AD. Overall, our findings demonstrated that icariin exhibits a strong neuroprotective function and have potential for future development for drug treating neurological disorders, such as AD.


Assuntos
Embrião de Mamíferos/citologia , Flavonoides/farmacologia , Homocisteína/efeitos adversos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas ADAM/genética , Animais , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
17.
Oncotarget ; 7(21): 31226-42, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27121311

RESUMO

Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic ß-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-α, IL-1ß and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects.


Assuntos
Polipose Adenomatosa do Colo/prevenção & controle , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/microbiologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Bactérias/classificação , Bactérias/genética , Citocinas/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Gynostemma/química , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Camundongos Knockout , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Sulfatos/metabolismo
18.
PLoS One ; 10(5): e0126807, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992551

RESUMO

Recent findings have revealed that gut microbiota plays a substantial role in modulating diseases such as autism, rheumatoid arthritis, allergies, and cancer that occur at sites distant to the gut. Athymic nude mice have been employed for tumorigenic research for decades; however, the relationships between the gut microbiome and host's response in drug treatment to the grafted tumors have not been explored. In this study, we analyzed the fecal microbiome of nonxenograft and xenograft nude mice treated with phytosaponins from a popular medicinal plant, Gynostemma pentaphyllum (Gp). Analysis of enterobacterial repetitive intergenic consensus (ERIC)-PCR data showed that the microbiota profile of xenograft mice departed from that of the nonxenograft mice. After ten days of treatment with Gp saponins (GpS), the microbiota of the treated mice was closer to the microbiota at Day 0 before the implantation of the tumor. Data obtained from 16S pyrosequencing of fecal samples reiterates the differences in microbiome between the nonxenograft and xenograft mice. GpS markedly increased the relative abundance of Clostridium cocleatum and Bacteroides acidifaciens, for which the beneficial effects on the host have been well documented. This study, for the first time, characterizes the properties of gut microbiome in nude mice responding to tumor implant and drug treatment. We also demonstrate that dietary saponins such as GpS can potentially regulate the gut microbial ecosystem by increasing the number of symbionts. Interestingly, this regulation of the gut ecosystem might, at least in part, be responsible for or contribute to the anticancer effect of GpS.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Gynostemma/química , Plantas Medicinais/química , Saponinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Bactérias/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fezes/microbiologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Ratos , Análise de Sequência de RNA
19.
Int J Nanomedicine ; 6: 151-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21499415

RESUMO

PURPOSE: To develop an in situ gel system comprising liposome-containing paclitaxel (PTX) dispersed within the thermoreversible gel (Pluronic® F127 gel) for controlled release and improved antitumor drug efficiency. METHODS: The dialysis membrane and membrane-less diffusion method were used to investigate the in vitro drug release behavior. Differential scanning calorimetry (DSC) thermal analysis was used to investigate the "micellization" and "sol/gel transition" process of in situ gel systems. In vitro cytotoxicity and drug uptake in KB cancer cells were determined by MTT, intercellular drug concentration, and fluorescence intensity assay. RESULTS: The in vitro release experiment performed with a dialysis membrane model showed that the liposomal gel exhibited the longest drug-release period compared with liposome, general gel, and commercial formulation Taxol(®). This effect is presumably due to the increased viscosity of liposomal gel, which has the effect of creating a drug reservoir. Both drug and gel release from the in situ gel system operated under zero-order kinetics and showed a correlation of release of PTX with gel, indicating a predominating release mechanism of the erosion type. Dispersing liposomes into the gel replaced larger gel itself for achieving the same gel dissolution rate. Both the critical micelle temperature and the sol/gel temperature, detected by DSC thermal analysis, were shifted to lower temperatures by adding liposomes. The extent of the shifts depended on the amount of embedded liposomes. MTT assay and drug uptake studies showed that the treatment with PTX-loaded liposomal 18% Pluronic F127 yielded cytotoxicities, intercellular fluorescence intensity, and drug concentration in KB cells much higher than that of conventional liposome, while blank liposomal 18% Pluronic F127 gel was far less than the Cremophor EL® vehicle and empty liposomes. CONCLUSIONS: A thermosensitive hydrogel with embedded liposome is a promising carrier for hydrophobic anticancer agents, to be used in parenteral formulations for treating local cancers.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos/química , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Poloxâmero/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Estabilidade de Medicamentos , Humanos , Hidrogéis , Micelas , Nanomedicina , Temperatura
20.
Food Chem ; 128(1): 70-80, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25214331

RESUMO

Gynostemma pentaphyllum Makino (Gp) was once used as a sweetener in Japan and is now widely consumed as an herbal tea worldwide for lowering cholesterol levels. Two taste variants, bitter and sweet, of Gp exist in the commercial market, but they cannot be differentiated morphologically nor by existing chemical analytical methods. This has been creating a problem in quality control of Gp products. In the present study, using HPLC-DAD and HPLC-ESI-MS analysis, we found that the Gp saponins, not flavonoids, from the sweet and bitter variants have distinctly different profiles. In addition, the two variants share only 69.01% homology in the ribosomal ITS-1 region, suggesting a phylogenic gap between these two variants. The combinations of chemical profiling and phylogenic analysis clearly confirm, for the first time, the distinction between these two taste variants. This information has direct application in the authentication and quality assessment of the various Gynostemma tea products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA