Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38722383

RESUMO

PURPOSE: Mu-opioid receptors (MORs) are widely expressed in the central nervous system (CNS), peripheral organs, and immune system. This study measured the whole body distribution of MORs in rhesus macaques using the MOR selective radioligand [11C]carfentanil ([11C]CFN) on the PennPET Explorer. Both baseline and blocking studies were conducted using either naloxone or GSK1521498 to measure the effect of the antagonists on MOR binding in both CNS and peripheral organs. METHODS: The PennPET Explorer was used for MOR total-body PET imaging in four rhesus macaques using [11C]CFN under baseline, naloxone pretreatment, and naloxone or GSK1521498 displacement conditions. Logan distribution volume ratio (DVR) was calculated by using a reference model to quantitate brain regions, and the standard uptake value ratios (SUVRs) were calculated for peripheral organs. The percent receptor occupancy (%RO) was calculated to establish the blocking effect of 0.14 mg/kg naloxone or GSK1521498. RESULTS: The %RO in MOR-abundant brain regions was 75-90% for naloxone and 72-84% for GSK1521498 in blocking studies. A higher than 90% of %RO were observed in cervical spinal cord for both naloxone and GSK1521498. It took approximately 4-6 min for naloxone or GSK1521498 to distribute to CNS and displace [11C]CFN from the MOR. A smaller effect was observed in heart wall in the naloxone and GSK1521498 blocking studies. CONCLUSION: [11C]CFN total-body PET scans could be a useful approach for studying mechanism of action of MOR drugs used in the treatment of acute and chronic opioid use disorder and their effect on the biodistribution of synthetic opioids such as CFN. GSK1521498 could be a potential naloxone alternative to reverse opioid overdose.

2.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732162

RESUMO

The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.


Assuntos
Encéfalo , Modelos Animais de Doenças , Estresse Oxidativo , Tomografia por Emissão de Pósitrons , Sinucleinopatias , alfa-Sinucleína , Animais , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Tomografia por Emissão de Pósitrons/métodos , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Radioisótopos de Flúor , Masculino , Camundongos Transgênicos , Compostos Radiofarmacêuticos , Espécies Reativas de Oxigênio/metabolismo
3.
Eur J Med Chem ; 261: 115751, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37688938

RESUMO

The difference in the secondary binding site (SBS) between the dopamine 2 receptor (D2R) and dopamine 3 receptor (D3R) has been used in the design of compounds displaying selectivity for the D3R versus D2R. In the current study, a series of bitopic ligands based on Fallypride were prepared with various secondary binding fragments (SBFs) as a means of improving the selectivity of this benzamide analog for D3R versus D2R. We observed that compounds having a small alkyl group with a heteroatom led to an improvement in D3R versus D2R selectivity. Increasing the steric bulk in the SBF increase the distance between the pyrrolidine N and Asp110, thereby reducing D3R affinity. The best-in-series compound was (2S,4R)-trans-27 which had a modest selectivity for D3R versus D2R and a high potency in the ß-arrestin competition assay which provides a measure of the ability of the compound to compete with endogenous dopamine for binding to the D3R. The results of this study identified factors one should consider when designing bitopic ligands based on Fallypride displaying an improved affinity for D3R versus D2R.


Assuntos
Dopamina , Receptores de Dopamina D3 , Receptores de Dopamina D3/química , Benzamidas/farmacologia , Ligantes
4.
J Med Chem ; 66(17): 12185-12202, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37651366

RESUMO

Abnormal α-synuclein (α-syn) aggregation characterizes α-synucleinopathies, including Parkinson's disease (PD) and multiple system atrophy (MSA). However, no suitable positron emission tomography (PET) radiotracer for imaging α-syn in PD and MSA exists currently. Our structure-activity relationship studies identified 4-methoxy-N-(4-(3-(pyridin-2-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)phenyl)benzamide (4i) as a PET radiotracer candidate for imaging α-syn. In vitro assays revealed high binding of 4i to recombinant α-syn fibrils (inhibition constant (Ki) = 6.1 nM) and low affinity for amyloid beta (Aß) fibrils in Alzheimer's disease (AD) homogenates. However, [3H]4i also exhibited high specific binding to AD, progressive supranuclear palsy, and corticobasal degeneration tissues as well as PD and MSA tissues, suggesting notable affinity to tau. Nevertheless, the specific binding to pathologic α-syn aggregates in MSA post-mortem brain tissues was significantly higher than in PD tissues. This finding demonstrated the potential use of [11C]4i as a PET tracer for imaging α-syn in MSA patients. Nonhuman primate PET studies confirmed good brain uptake and rapid washout for [11C]4i.


Assuntos
Doença de Alzheimer , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Animais , alfa-Sinucleína , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37259459

RESUMO

The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).

6.
Mol Imaging Biol ; 25(4): 704-719, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991273

RESUMO

PURPOSE: Previous studies from our lab utilized an ultra-high throughput screening method to identify compound 1 as a small molecule that binds to alpha-synuclein (α-synuclein) fibrils. The goal of the current study was to conduct a similarity search of 1 to identify structural analogs having improved in vitro binding properties for this target that could be labeled with radionuclides for both in vitro and in vivo studies for measuring α-synuclein aggregates. METHODS: Using 1 as a lead compound in a similarity search, isoxazole derivative 15 was identified to bind to α-synuclein fibrils with high affinity in competition binding assays. A photocrosslinkable version was used to confirm binding site preference. Derivative 21, the iodo-analog of 15, was synthesized, and subsequently radiolabeled isotopologs [125I]21 and [11C]21 were successfully synthesized for use in in vitro and in vivo studies, respectively. [125I]21 was used in radioligand binding studies in post-mortem Parkinson's disease (PD) and Alzheimer's disease (AD) brain homogenates. In vivo imaging of an α-synuclein mouse model and non-human primates was performed with [11C]21. RESULTS: In silico molecular docking and molecular dynamic simulation studies for a panel of compounds identified through a similarity search, were shown to correlate with Ki values obtained from in vitro binding studies. Improved affinity of isoxazole derivative 15 for α-synuclein binding site 9 was indicated by photocrosslinking studies with CLX10. Design and successful (radio)synthesis of iodo-analog 21 of isoxazole derivative 15 enabled further in vitro and in vivo evaluation. Kd values obtained in vitro with [125I]21 for α-synuclein and Aß42 fibrils were 0.48 ± 0.08 nM and 2.47 ± 1.30 nM, respectively. [125I]21 showed higher binding in human postmortem PD brain tissue compared with AD tissue, and low binding in control brain tissue. Lastly, in vivo preclinical PET imaging showed elevated retention of [11C]21 in PFF-injected mouse brain. However, in PBS-injected control mouse brain, slow washout of the tracer indicates high non-specific binding. [11C]21 showed high initial brain uptake in a healthy non-human primate, followed by fast washout that may be caused by rapid metabolic rate (21% intact [11C]21 in blood at 5 min p.i.). CONCLUSION: Through a relatively simple ligand-based similarity search, we identified a new radioligand that binds with high affinity (<10 nM) to α-synuclein fibrils and PD tissue. Although the radioligand has suboptimal selectivity for α-synuclein towards Aß and high non-specific binding, we show here that a simple in silico approach is a promising strategy to identify novel ligands for target proteins in the CNS with the potential to be radiolabeled for PET neuroimaging studies.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Camundongos , Animais , Humanos , alfa-Sinucleína/metabolismo , Simulação de Acoplamento Molecular , Radioisótopos do Iodo , Doença de Parkinson/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Neuroimagem , Ligantes , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos
8.
Clin Cancer Res ; 29(8): 1515-1527, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441795

RESUMO

PURPOSE: PARP inhibitors have become the standard-of-care treatment for homologous recombination deficient (HRD) high-grade serous ovarian cancer (HGSOC). However, not all HRD tumors respond to PARPi. Biomarkers to predict response are needed. [18F]FluorThanatrace ([18F]FTT) is a PARPi-analog PET radiotracer that noninvasively measures PARP-1 expression. Herein, we evaluate [18F]FTT as a biomarker to predict response to PARPi in patient-derived xenograft (PDX) models and subjects with HRD HGSOC. EXPERIMENTAL DESIGN: In PDX models, [18F]FTT-PET was performed before and after PARPi (olaparib), ataxia-telangiectasia inhibitor (ATRi), or both (PARPi-ATRi). Changes in [18F]FTT were correlated with tumor volume changes. Subjects were imaged with [18F]FTT-PET at baseline and after ∼1 week of PARPi. Changes in [18F]FTT-PET uptake were compared with changes in tumor size (RECISTv1.1), CA-125, and progression-free survival (PFS). RESULTS: A decrease in [18F]FTT tumor uptake after PARPi correlated with response to PARPi, or PARPi-ATRi treatment in PARPi-resistant PDX models (r = 0.77-0.81). In subjects (n = 11), percent difference in [18F]FTT-PET after ∼7 days of PARPi compared with baseline correlated with best RECIST response (P = 0.01), best CA-125 response (P = 0.033), and PFS (P = 0.027). All subjects with >50% reduction in [18F]FTT uptake had >6-month PFS and >50% reduction in CA-125. Utilizing only baseline [18F]FTT uptake did not predict such responses. CONCLUSIONS: The decline in [18F]FTT uptake shortly after PARPi initiation provides a measure of drug-target engagement and shows promise as a biomarker to guide PARPi therapies in this pilot study. These results support additional preclinical mechanistic and clinical studies in subjects receiving PARPi ± combination therapy. See related commentary by Liu and Zamarin, p. 1384.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Projetos Piloto , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Biomarcadores , Tomografia por Emissão de Pósitrons/métodos
9.
Molecules ; 29(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38202706

RESUMO

A series of bitopic ligands based on Fallypride with a flexible secondary binding fragment (SBF) were prepared with the goal of preparing a D3R-selective compound. The effect of the flexible linker ((R,S)-trans-2a-d), SBFs ((R,S)-trans-2h-j), and the chirality of orthosteric binding fragments (OBFs) ((S,R)-trans-d, (S,R)-trans-i, (S,S)-trans-d, (S,S)-trans-i, (R,R)-trans-d, and (R,R)-trans-i) were evaluated in in vitro binding assays. Computational chemistry studies revealed that the interaction of the fragment binding to the SBF increased the distance between the pyrrolidine nitrogen and ASP1103.32 of the D3R, thereby reducing the D3R affinity to a suboptimal level.


Assuntos
Química Computacional , Nitrogênio , Ligantes , Projetos de Pesquisa
10.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897835

RESUMO

A series of σ2R compounds containing benzimidazolone and diazacycloalkane cores was synthesized and evaluated in radioligand binding assays. Replacing the piperazine moiety in a lead compound with diazaspiroalkanes and the fused octahydropyrrolo[3,4-b] pyrrole ring system resulted in a loss in affinity for the σ2R. On the other hand, the bridged 2,5-diazabicyclo[2.2.1]heptane, 1,4-diazepine, and a 3-aminoazetidine analog possessed nanomolar affinities for the σ2R. Computational chemistry studies were also conducted with the recently published crystal structure of the σ2R/TMEM97 and revealed that hydrogen bond interactions with ASP29 and π-stacking interactions with TYR150 were largely responsible for the high binding affinity of small molecules to this protein.


Assuntos
Receptores sigma , Ligantes , Piperazina , Ensaio Radioligante , Receptores sigma/metabolismo , Relação Estrutura-Atividade
11.
EJNMMI Res ; 12(1): 43, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895177

RESUMO

BACKGROUND: Oxidative stress is implicated in the pathogenesis of the most common neurodegenerative diseases, such as Alzheimer's disease (AD). However, tracking oxidative stress in the brain has proven difficult and impeded its use as a biomarker. Herein, we investigate the utility of a novel positron emission tomography (PET) tracer, [18F]ROStrace, as a biomarker of oxidative stress throughout the course of AD in the well-established APP/PS1 double-mutant mouse model. PET imaging studies were conducted in wild-type (WT) and APP/PS1 mice at 3 different time points, representing early (5 mo.), middle (10 mo.), and advanced (16 mo.) life (n = 6-12, per sex). Semi-quantitation SUVRs of the plateau phase (40-60 min post-injection; SUVR40-60) of ten brain subregions were designated by the Mirrione atlas and analyzed by Pmod. Statistical parametric mapping (SPM) was used to distinguish brain regions with elevated ROS in APP/PS1 relative to WT in both sexes. The PET studies were validated by ex vivo autoradiography and immunofluorescence with the parent compound, dihydroethidium. RESULTS: [18F]ROStrace retention was increased in the APP/PS1 brain compared to age-matched controls by 10 mo. of age (p < 0.0001) and preceded the accumulation of oxidative damage in APP/PS1 neurons at 16 mo. (p < 0.005). [18F]ROStrace retention and oxidative damages were higher and occurred earlier in female APP/PS1 mice as measured by PET (p < 0.001), autoradiography, and immunohistochemistry (p < 0.05). [18F]ROStrace differences emerged midlife, temporally and spatially correlating with increased Aß burden (r2 = 0.36; p = 0.0003), which was also greatest in the female brain (p < 0.001). CONCLUSIONS: [18F]ROStrace identifies increased oxidative stress and neuroinflammation in APP/PS1 female mice, concurrent with increased amyloid burden midlife. Differences in oxidative stress during this crucial time may partially explain the sexual dimorphism in AD. [18F]ROStrace may provide a long-awaited tool to stratify at-risk patients who may benefit from antioxidant therapy prior to irreparable neurodegeneration.

12.
J Med Chem ; 65(8): 6261-6272, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35404616

RESUMO

In this study, a panel of 46 compounds containing five different scaffolds known to have high σ2 receptor affinity were screened. 6,7-Dimethoxy-2-[4-(4-methoxyphenyl)butan-2-yl]-1,2,3,4-tetrahydroisoquinoline [(±)-7] (Ki for σ1 = 48.4 ± 7.7 nM, and Ki for σ2 = 0.59 ± 0.02 nM) and its desmethyl analogue, (±)-8 (Ki for σ1 = 108 ± 35 nM, and Ki for σ2 = 4.92 ± 0.59 nM), showed excellent binding affinity and subtype selectivity for σ2 receptors. In vitro cell binding indicated that σ2 receptor binding of [11C]-(±)-7 and [11C]-(±)-8 was dependent on TMEM97 protein expression. In PET studies, the peak brain uptake of [11C]-(±)-7 (8.28 ± 2.52%ID/cc) was higher than that of [11C]-(±)-8 (4.25 ± 0.97%ID/cc) with specific distribution in the cortex and hypothalamus. Brain uptake or tissue binding was selectively inhibited by ligands with different σ2 receptor binding affinities. The results suggest [11C]-(±)-7 can be used as a PET radiotracer for imaging the function of σ2 receptors in central nervous system disorders.


Assuntos
Receptores sigma , Tetra-Hidroisoquinolinas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Tetra-Hidroisoquinolinas/química
13.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613875

RESUMO

Previous studies have confirmed that the binding of D3 receptor antagonists is competitively inhibited by endogenous dopamine despite excellent binding affinity for D3 receptors. This result urges the development of an alternative scaffold that is capable of competing with dopamine for binding to the D3 receptor. Herein, an SAR study was conducted on metoclopramide that incorporated a flexible scaffold for interaction with the secondary binding site of the D3 receptor. The alteration of benzamide substituents and secondary binding fragments with aryl carboxamides resulted in excellent D3 receptor affinities (Ki = 0.8-13.2 nM) with subtype selectivity to the D2 receptor ranging from 22- to 180-fold. The ß-arrestin recruitment assay revealed that 21c with 4-(pyridine-4-yl)benzamide can compete well against dopamine with the highest potency (IC50 = 1.3 nM). Computational studies demonstrated that the high potency of 21c and its analogs was the result of interactions with the secondary binding site of the D3 receptor. These compounds also displayed minimal effects for other GPCRs except moderate affinity for 5-HT3 receptors and TSPO. The results of this study revealed that a new class of selective D3 receptor antagonists should be useful in behavioral pharmacology studies and as lead compounds for PET radiotracer development.


Assuntos
Receptores de Dopamina D2 , Receptores de Dopamina D3 , Ligantes , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Dopamina , Relação Estrutura-Atividade , Benzamidas/química
14.
Front Aging Neurosci ; 13: 704041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220490

RESUMO

Poly (ADP-ribose) (PAR) is a negatively charged polymer that is biosynthesized by Poly (ADP-ribose) Polymerase-1 (PARP-1) and regulates various cellular processes. Alpha-synuclein (αSyn) is an intrinsically disordered protein (IDP) that has been directly implicated with driving the onset and progression of Parkinson's disease (PD). The mechanisms by which α-synuclein (αSyn) elicits its neurotoxic effects remain unclear, though it is well established that the main components of Lewy bodies (LBs) and Lewy neurites (LNs) in PD patients are aggregated hyperphosphorylated (S129) forms of αSyn (pαSyn). In the present study, we used immunofluorescence-based assays to explore if PARP-1 enzymatic product (PAR) promotes the aberrant cytoplasmic accumulation of pαSyn. We also performed quantitative measurements using in situ proximity ligation assays (PLA) on a transgenic murine model of α-synucleinopathy (M83-SNCA∗A53T) and post mortem PD/PDD patient samples to characterize PAR-pαSyn interactions. Additionally, we used bioinformatic approaches and site-directed mutagenesis to identify PAR-binding regions on αSyn. In summary, our studies show that PAR-pαSyn interactions are predominantly observed in PD-relevant transgenic murine models of αSyn pathology and post mortem PD/PDD patient samples. Moreover, we confirm that the interactions between PAR and αSyn involve electrostatic forces between negatively charged PAR and lysine residues on the N-terminal region of αSyn.

15.
Biomolecules ; 11(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918451

RESUMO

[18F]Fallypride and [18F]Fluortriopride (FTP) are two different PET radiotracers that bind with sub-nanomolar affinity to the dopamine D3 receptor (D3R). In spite of their similar D3 affinities, the two PET ligands display very different properties for labeling the D3R in vivo: [18F]Fallypride is capable of binding to D3R under "baseline" conditions, whereas [18F]FTP requires the depletion of synaptic dopamine in order to image the receptor in vivo. These data suggest that [18F]Fallypride is able to compete with synaptic dopamine for binding to the D3R, whereas [18F]FTP is not. The goal of this study was to conduct a series of docking and molecular dynamic simulation studies to identify differences in the ability of each molecule to interact with the D3R that could explain these differences with respect to competition with synaptic dopamine. Competition studies measuring the ability of each ligand to compete with dopamine in the ß-arrestin assay were also conducted. The results of the in silico studies indicate that FTP has a weaker interaction with the orthosteric binding site of the D3R versus that of Fallypride. The results of the in silico studies were also consistent with the IC50 values of each compound in the dopamine ß-arrestin competition assays. The results of this study indicate that in silico methods may be able to predict the ability of a small molecule to compete with synaptic dopamine for binding to the D3R.


Assuntos
Ligantes , Receptores de Dopamina D3/química , Benzamidas/química , Benzamidas/metabolismo , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Receptores de Dopamina D3/metabolismo , Termodinâmica
16.
Molecules ; 25(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352773

RESUMO

Theranostics are emerging as a pillar of cancer therapy that enable the use of single molecule constructs for diagnostic and therapeutic application. As poly adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) is overexpressed in various cancer types, and is localized to the nucleus, PARP-1 can be safely targeted with Auger emitters to induce DNA damage in tumors. Here, we investigated a radioiodinated PARP inhibitor, [125I]KX1, and show drug target specific DNA damage and subsequent killing of BRCA1 and non-BRCA mutant ovarian cancer cells at sub-pharmacological concentrations several orders of magnitude lower than traditional PARP inhibitors. Furthermore, we demonstrated that viable tumor tissue from ovarian cancer patients can be used to screen tumor radiosensitivity ex-vivo, enabling the direct assessment of therapeutic efficacy. Finally, we showed tumors can be imaged by single-photon computed tomography (SPECT) with PARP theranostic, [123I]KX1, in a human ovarian cancer xenograft mouse model. These data support the utility of PARP-1 targeted radiopharmaceutical therapy as a theranostic option for PARP-1 overexpressing ovarian cancers.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Radioisótopos do Iodo/farmacologia , Camundongos SCID
17.
J Vis Exp ; (159)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32510515

RESUMO

A robot-assisted hand is used for the rehabilitation of patients with impaired upper limb function, particularly for stroke patients with a loss of motor control. However, it is unclear how conventional occupational training strategies can be applied to the use of rehabilitation robots. Novel robotic technologies and occupational therapy concepts are used to develop a protocol that allows patients with impaired upper limb function to grasp objects using their affected hand through a variety of pinching and grasping functions. To conduct this appropriately, we used five types of objects: a peg, a rectangular cube, a cube, a ball, and a cylindrical bar. We also equipped the patients with a robotic hand, the Mirror Hand, an exoskeleton hand that is fitted to the subject's affected hand and follows the movement of the sensor glove fitted to their unaffected hand (bimanual movement training (BMT)). This study had two stages. Three healthy subjects were first recruited to test the feasibility and acceptability of the training program. Three patients with hand dysfunction caused by stroke were then recruited to confirm the feasibility and acceptability of the training program, which was conducted on 3 consecutive days. On each day, the patient was monitored during 5 min of movement in a passive range of motion, 5 min of robot-assisted bimanual movement, and task-oriented training using the five objects. The results showed that both healthy subjects and subjects who had suffered a stroke in conjunction with the robotic hand could successfully grasp the objects. Both healthy subjects and those who had suffered a stroke performed well with the robot-assisted task-oriented training program in terms of feasibility and acceptability.


Assuntos
Exoesqueleto Energizado , Mãos , Robótica , Reabilitação do Acidente Vascular Cerebral/instrumentação , Adulto , Feminino , Mãos/fisiopatologia , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Movimento
18.
Chem Commun (Camb) ; 56(24): 3567-3570, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32104795

RESUMO

Fluorescent small molecules are powerful tools for imaging α-synuclein pathology in vitro and in vivo. In this work, we explore benzofuranone as a potential scaffold for the design of fluorescent α-synuclein probes. These compounds have high affinity for α-synuclein, show fluorescent turn-on upon binding to fibrils, and display different binding to Lewy bodies, Lewy neurites and glial cytoplasmic inclusion pathologies in post-mortem brain tissue. These studies not only reveal the potential of benzofuranone compounds as α-synuclein specific fluorescent probes, but also have implications for the ways in which α-synucleinopathies are conformationally different and display distinct small molecule binding sites.


Assuntos
Benzofuranos/química , Corantes Fluorescentes/química , alfa-Sinucleína/análise , Doença de Alzheimer , Fluorescência , Humanos , Microscopia de Fluorescência , Atrofia de Múltiplos Sistemas , Doença de Parkinson
19.
Chem Sci ; 11(47): 12746-12754, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889379

RESUMO

Small molecules that bind with high affinity and specificity to fibrils of the α-synuclein (αS) protein have the potential to serve as positron emission tomography (PET) imaging probes to aid in the diagnosis of Parkinson's disease and related synucleinopathies. To identify such molecules, we employed an ultra-high throughput in silico screening strategy using idealized pseudo-ligands termed exemplars to identify compounds for experimental binding studies. For the top hit from this screen, we used photo-crosslinking to confirm its binding site and studied the structure-activity relationship of its analogs to develop multiple molecules with nanomolar affinity for αS fibrils and moderate specificity for αS over Aß fibrils. Lastly, we demonstrated the potential of the lead analog as an imaging probe by measuring binding to αS-enriched homogenates from mouse brain tissue using a radiolabeled analog of the identified molecule. This study demonstrates the validity of our powerful new approach to the discovery of PET probes for challenging molecular targets.

20.
J Med Chem ; 62(10): 5132-5147, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31021617

RESUMO

Previously, we reported a 3-(2-methoxyphenyl)-9-(3-((4-methyl-5-phenyl-4 H-1,2,4-triazol-3-yl)thio)propyl)-3,9-diazaspiro[5.5]undecane (1) compound with excellent dopamine D3 receptor (D3R) affinity (D3R Ki = 12.0 nM) and selectivity (D2R/D3R ratio = 905). Herein, we present derivatives of 1 with comparable D3R affinity (32, D3R Ki = 3.2 nM, D2R/D3R ratio = 60) and selectivity (30, D3R Ki = 21.0 nM, D2R/D3R ratio = 934). Fragmentation of 1 revealed orthosteric fragment 5a to express an unusually low D3R affinity ( Ki = 2.7 µM). Compared to piperazine congener 31, which retains a high-affinity orthosteric fragment (5d, D3R Ki = 23.9 nM), 1 was found to be more selective for the D3R among D1- and D2-like receptors and exhibited negligible off-target interactions at serotoninergic and adrenergic G-protein-coupled receptors (GPCRs), common off-target sites for piperazine-containing D3R scaffolds. This study provides a unique rationale for implementing weakly potent orthosteric fragments into D3R ligand systems to minimize drug promiscuity at other aminergic GPCR sites.


Assuntos
Receptores de Dopamina D3/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Compostos de Espiro/farmacologia , Sequência Conservada , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Ensaio Radioligante , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Serotonina/efeitos dos fármacos , Compostos de Espiro/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA