Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 8(1): 2002930, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437584

RESUMO

A novel quinoidal thienoisoindigo (TII)-containing small molecule family with dicyanomethylene end-capping units and various alkyl chains is synthesized as n-type organic small molecules for solution-processable organic field effect transistors (OFETs). The molecular structure of the 2-hexyldecyl substituted derivative, TIIQ-b16, is determined via single-crystal X-ray diffraction and shows that the TIIQ core is planar and exhibits molecular layers stacked in a "face-to-face" arrangement with short core intermolecular distances of 3.28 Å. The very planar core structure, shortest intermolecular N···H distance (2.52 Å), existence of an intramolecular non-bonded contact between sulfur and oxygen atom (S···O) of 2.80 Å, and a very low-lying LUMO energy level of -4.16 eV suggest that TIIQ molecules should be electron transporting semiconductors. The physical, thermal, and electrochemical properties as well as OFET performance and thin film morphologies of these new TIIQs are systematically studied. Thus, air-processed TIIQ-b16 OFETs exhibit an electron mobility up to 2.54 cm2 V-1 s-1 with a current ON/OFF ratio of 105-106, which is the first demonstration of TII-based small molecules exhibiting unipolar electron transport characteristics and enhanced ambient stability. These results indicate that construction of quinoidal molecule from TII moiety is a successful approach to enhance n-type charge transport characteristics.

2.
Org Lett ; 20(1): 40-43, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29219323

RESUMO

The nitrogenization of phenyl rings on DIM derivatives not only enhances molecular coplanarity but also stabilizes molecular LUMO levels, favoring charge transfer and improving air stability. Therefore, n-type organic field-effect transistors (OFETs) that are based on DIM-N2C8 with nitrogen atoms on both sides of the phenyl rings exhibit a moderate electron mobility of 0.059 cm2 V-1 s-1 under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA